
Copy-Protection from Unclonable Puncturable Obfuscation,
Revisited ∗

Prabhanjan Ananth1, Amit Behera2, Zikuan Huang3, Fuyuki Kitagawa4,5, Takashi
Yamakawa4,5

1University of California, Santa Barbara
prabhanjan@cs.ucsb.edu

2NTT Research
amitbehera1767@gmail.com

3Tsinghua University
hzk21@mails.tsinghua.edu.cn

4NTT Social Informatics Laboratories
{fuyuki.kitagawa,takashi.yamakawa}@ntt.com

5NTT Research Center for Theoretical Quantum Information

October 8, 2025

Abstract

Quantum copy-protection is a functionality-preserving compiler that transforms a classical program into an unclonable
quantum program. This primitive has emerged as a foundational topic in quantum cryptography, with significant recent
developments. However, characterizing the functionalities that can be copy-protected is still an active and ongoing
research direction.

Assuming the existence of indistinguishability obfuscation and learning with errors, we show the existence of
copy-protection for a variety of classes of functionalities, including puncturable cryptographic functionalities and
subclasses of evasive functionalities. This strictly improves upon prior works, which were either based on the existence
of heuristic assumptions [Ananth and Behera CRYPTO’24] or were based on the classical oracle model [Coladangelo
and Gunn STOC’24]. Moreover, our constructions satisfy a new and much stronger security definition compared to the
ones studied in the prior works. To design copy-protection, we follow the blueprint of constructing copy-protection
from unclonable puncturable obfuscation (UPO) [Ananth and Behera CRYPTO’24] and present a new construction of
UPO by leveraging the recently introduced techniques from [Kitagawa and Yamakawa TCC’25].

∗This article is a merger of the following two works, and subsumes both the works: [ABH25] (https://eprint.iacr.org/2025/1207.pdf) and [KY25a]
(https://eprint.iacr.org/2025/1264.pdf).

1

Contents
1 Introduction 3

1.1 Our Results in a Nutshell . 4
1.2 Technical Overview . 5

2 Preliminaries 14
2.1 Quantum Query Lower Bound . 14
2.2 Min-Entropy, Universal Hash Functions, and Leftover Hash Lemma 14
2.3 Classical Cryptographic Primitives . 15
2.4 Quantum Goldreich-Levin . 16
2.5 Useful Lemma . 17

3 Definitions 18
3.1 Definition of Copy-Protection . 18
3.2 Definitions of Unclonable Puncturable Obfuscation . 22

4 Strong Monogamy Property of Coset States with Auxiliary Inputs 26
4.1 Proof of Theorem 4.2 . 28

5 Construction of UPO 32
5.1 Construction . 32
5.2 Proof of Security . 34

6 Alternative Proof of Security for Uniform Inputs 39

7 Oracular Pseudorandomness-Style Copy-Protection 42
7.1 Puncturable Secure Circuits . 42
7.2 Oracular Pseudorandomness-Style Copy-Protection for Pseudorandomness-Style Puncturable-Secure

Circuits . 46

8 Oracular Unpredictability-Style Copy-Protection 52
8.1 Progmaskable circuit classes . 52
8.2 Oracular Unpredictability-Style Copy-Protection for Progmaskable Circuits 57
8.3 Relation between Progmaskable and Puncturable Circuits . 64

9 Summary of Results 69

A Proof of Theorem 6.2 73

2

1 Introduction
Quantum copy-protection is one of the prominent notions in quantum cryptography. Informally speaking, copy-protection,
introduced by Aaronson [Aar09a], is a functionality preserving compiler that turns an efficiently implementable function
f into a quantum state ρ f such that given a single copy of ρ f , it is computationally infeasible to produce two
or more copies that approximately compute f . This primitive exemplifies the power of quantum mechanics in
cryptography, belonging to an emerging and rapidly expanding class of unclonable primitives. These primitives
exploit the fundamental no-cloning principle of quantum mechanics to achieve cryptographic tasks that are provably
impossible using classical computational resources. This area has seen remarkable momentum in recent years with
many feasibility results [CMP20a, CLLZ21, ALL+21a, AKL+22, LLQZ22, AKL23, CHV23, AB24, CG24b], negative
results [AP21, AK22], study of weaker variants [ALL+21b, AP21, BGK+24] and stronger security notions [ÇG24a].
Yet despite this remarkable progress, some important questions remain.

Copy-protectable functionalities. Ever since it was first conceived in 2009, the central research question in the topic
of copy-protection has been to understand the classes of functionalities that can be copy-protected.

Ideally, we would want to identify which properties the functionalities need to satisfy in order for them to be
copy-protected. It was observed in [Aar09a] that functionalities that are efficiently learnable cannot be copy-protected in
any meaningful way. On the other hand, it was believed that unlearnable functionalities can be copy-protected. However,
a recent work [AP21] shows that even unlearnability is not a sufficient criteria for copy-protectable functionalities.
Following [AP21], the works of [CMP20b, CLLZ21, LLQZ22, AKL+22, AKL23, CHV23] showed that some specific
cryptographic functionalities (PRF, decryption and signing functionalities) and point functions can be copy-protected.
While these works made significant advances, they failed to shed insight on the type of properties the functionalities
needed to satisfy in order for them to copy-protectable1.

Couple of recent works [AB24, CG24b] took a different route and made a major progress towards characterizing the
class of functionalities that can be copy-protected. They identified a property called puncturability and argued that
as long as a class of functionalities satisfied puncturability then they can be copy-protected. However, these works
came with a major caveat: their constructions were either based on heuristic assumptions2 or in the classical oracle
model. Moreover, there was also a restriction on the output length of functionalities and only long output3 puncturable
functionalities can be copy-protected. Additionally, [AB24] also showed feasibility of copy-protecting a natural subclass
of evasive functions albeit under heuristic assumptions: These works left open the following important question:

Which classes of functionalities can be copy-protected under well-studied assumptions?

Revisiting security definitions. The existing security definitions of copy-protection is quite restrictive and does not
capture many attack scenarios. Before we elaborate, let us first recall the typical security definition of copy-protection
that has been studied in the literature. The security experiment starts with the (adversarial) efficient Alice receiving a
copy-protection of f . It then creates a bipartite state, and shares with two non-communicating efficient adversarial
parties Bob and Charlie. Then, Bob and Charlie respectively receive uniformly random4 inputs xB and xC and to break
security, they need to simultaneously produce f (xB) and f (xC). For security to hold, it is crucial that Bob and Charlie
do not receive any other auxiliary information about the function. As an example, all bets are off if Bob learns the
output of the function on related inputs (say, xB + 1) or even if xB is sampled from a different distribution other than
the uniform distribution. In some settings, it is crucial that the security needs to be strengthened to allow for Bob and
Charlie to also receive some leakage about f . A case study to consider is copy-protecting decryption functionalities.
Ideally, we would like to achieve chosen ciphertext attack (CCA) security: even if Bob and Charlie receive access to

1[ALL+21a, LLQZ22] did conjecture that any class of functionalities that can be watermarked can also be copy-protected. However, as far as we
know, there is no proof of this conjecture.

2In particular, they proposed a new conjecture called the simultaneous inner product conjecture and based security of copy-protection under this
conjecture along with indistinguishability obfuscation. Till date, this conjecture has neither been proven nor disproven.

3By long output, here we mean that the output length is ω(log(λ)).
4We note that this is not the case for all functionalities. For instance, for point functions, the distribution over (xB , xC) is not uniform. However, for

many other functionalities, such as pseudorandom functions [CLLZ21], signing functionalities [LLQZ22], uniform distribution is the one commonly
considered in the literature.

3

a decryption oracle, they should not be able to decrypt the challenge ciphertext. Unfortunately, the existing security
definition of copy-protection does not capture CCA attacks.

This prompts the following question:

Can we achieve a stronger definition of copy-protection wherein the security holds even if
Bob and Charlie receive non-uniform inputs as well as some leakage about the function?

1.1 Our Results in a Nutshell
We make progress on the aforementioned questions. We identify interesting classes of functionalities that can be
copy-protected under well studied assumptions, strictly improving upon existing results. Our feasibility also satisfy
stronger security definitions wherein the security guarantees hold even if the adversarial Bob and Charlie receive
non-uniform challenge inputs and additional information about the functionality being copy-protected. Stating our
results formally would involve recalling and introducing many definitions which in turn would overwhelm the reader.
Instead, we will present the main consequences of our results. The formal result statements (which are more general)
would be stated in Section 9.

Puncturable functionalities. A class of (efficiently implementable) functionalities F is puncturable5 if it is equipped
with an efficient puncturing algorithm Puncture such that given a function f ∈ F and an input x, it produces a punctured
function fx such that even given fx, it is computationally infeasible to produce f (x) except with probability negligibly
close to 2−m, where m is the output length of f . Several puncturable cryptographic functionalities have been studied
starting with the seminal works on puncturing pseudorandom functions (see for example [BW13]).

We show the following:

Theorem 1.1 (Informal). Assuming indistinguishability obfuscation and one-way functions, there exist copy-protection
for:

• m-bit output puncturable functionalities, where m = ω(log(λ)) and,

• 1-bit output puncturable functionalities

Prior works on copy-protecting m-bit output puncturable functionalities, for m = ω(log(λ)), either relied upon
heuristic assumptions [AB24] or were based in the classical oracle model [CG24b]. In contrast, our result is based on
well-studied assumptions. Moreover, copy-protecting 1-bit output puncturable functionalities in the plain model was not
even known prior to our work.

Another (stronger) variant of puncturing security we can consider is pseudorandomness puncturing security wherein
it is required that even given fx, f (x) is computationally indistinguishable from uniform. For such functionalities,
we can consider a different security definition for copy-protection. Instead of Bob and Charlie receiving xB and
xC respectively, they instead respectively receive (xB , yB) and (xC , yC) respectively. Here, yB (resp., yC) is either
C(xB) (resp., C(xC)) or sampled uniformly at random. This variant was first studied by [CLLZ21] in the context of
copy-protecting pseudorandom functions. On the other hand, we study this definition for the more general class of
pseudorandom puncturable functionalities. We call a copy-protection scheme satisfying this variant to be pseudorandom
copy-protection.

We show the following:

Theorem 1.2 (Informal). Assuming indistinguishability obfuscation and one-way functions, there exist pseudorandom
copy-protection for pseudorandom functionalities (for all output lengths).

The prior work on pseudorandom copy-protection6 [CG24b] relied upon the classical oracle model [BBV24].
5In the technical sections, we refer to this as unpredictability-style puncturable security (see Definition 7.1).
6[CG24b] referred to it as decision copy-protection.

4

Multi-point functions. A class of functionalitiesF is a class of k-point functions if every function f : {0, 1}n → {0, 1}
in F satisfies the property that there are exactly k inputs x1, . . . , xk ∈ {0, 1}n such that f (xi) = 1 and for every
x /∈ {x1, . . . , xk}, f (x) = 0. When k = 1, this precisely corresponds to the case of point functions. Copy-protecting
point functions has been extensively studied [Aar09b, CMP20a, AKL+22, AKL23, CHV23] and the work of [CHV23]
presents a construction of copy-protection for point functions from indistinguishability obfuscation and learning with
errors. However, their work does not address the more general problem of k-point functions, for arbitrary k.

We show the following:

Theorem 1.3 (Informal). Assuming indistinguishability obfuscation and one-way functions, there exist copy-protection
for k-point functions, where k > 1 and k is polynomial.

Stronger Security Definition. In addition to the above new results, we also study stronger security definitions for
copy-protection. Specifically, we strengthen the security definitions in two ways:

• Entropic inputs: in the existing definitions of copy-protection, Bob and Charlie are given uniformly random
(independently generated or identical) inputs. However, the existing definitions do not readily generalize to the
setting when the inputs are not generated uniformly at random and instead have high entropy. In our definitions
(see Section 3.1), Bob and Charlie respectively receive the inputs xB and xC such that the inputs are sampled from
a high entropic distribution.

• Oracle access: We additionally give Bob B and Charlie C access to an oracle that computes f , where f is the
program being copy-protected. To avoid trivial attacks, the oracle that Bob (resp., Charlie) has access to outputs
⊥ on the input xB (resp., xC). Moreover, even Alice A receives oracle access to C. We note that the oracle access
to all the adversaries in our security definitions(see Section 3.1) are with respect to quantum superposition queries
(see Section 2 on Page 14 for the formal definition of superposition queries).

To the best of our knowledge, this is the first work that studies the above strengthenings of the security definition of
copy-protection. Both the results discussed earlier (Theorem 1.1, Theorem 1.2 and Theorem 1.3) satisfy (under the
additional assumption of learning with errors) the stronger security definition of copy-protection that incorporates
both the above bullets7.

Blueprint: Copy-protection from UPO. Our main approach is to design copy-protection from a recently introduced
primitive called unclonable puncturable obfuscation (UPO) [AB24], which combines the concepts of program obfuscation
and unclonability. In particular, they showed that UPO for m-bit output puncturable functionalities (for m ∈ ω(log(λ)),
is also a copy-protection scheme for the same class of functionalities. However, their construction of UPO relied
upon heuristic assumptions. The main innovation of our work is to show that (a variant of) UPO can be achieved
based on well-studied assumptions, which leads us to the first bullet of Theorem 1.1. Specifically, we construct UPO
from indistinguishability obfuscation and one-way functions (and from indistinguishability obfuscation and learning
with errors in the high min-entropic setting). Additionally, we present new constructions of copy-protection from
UPO, showing that not just m-bit output puncturable functionalities (for m ∈ ω(log(λ))) but also broader classes of
functionalities with varying output sizes can be copy-protected based on the variant of UPO that we construct, which in
turn lets us prove Theorem 1.2 and Theorem 1.3.

1.2 Technical Overview
Recap: Unclonable Puncturable Obfuscation (UPO). We first recall the definition of unclonable puncturable
obfuscation. UPO consists of two efficient algorithms (Obf , QEval). The algorithm Obf takes as input a classical circuit
C : {0, 1}ℓinp → {0, 1}ℓout and outputs a quantum state C̃. The algorithm QEval takes as input a quantum state C̃, an
input x and outputs C(x).

7In the context of pseudorandom copy-protection, our construction satisfies an even stronger notion that implies both the “identical coin” and
“independent coin” versions, with the above-mentioned strengthening. We refer to this stronger notion as the “+” version of the strengthened
pseudorandom copy-protection (see Definition 3.4), due to it’s similarity with the “+”-notion studied in the context of Single Decryptor Encryption
(SDE) introduced in [KY25b].

5

Couple of security notions have already been considered for UPO [AB24], and we introduce an additional security
notion in this work. However, all the (new and old) definitions follow the same template: the adversarial Alice (A) either
receives obfuscation of C (when challenge bit b = 0) or obfuscation of C punctured at a random point(s) (when b = 1).
Here, C is adversarially chosen but the random points at which C is punctured is hidden from A . Then, A computes
a bipartite state and shares it with two non-communicating adversaries Bob B and Charlie (C) who then receive the
random points. At this point, B and C need to simultaneously output one bit each such that they both together are
correlated with b. The different variants depend on (a) how the random points are sampled and, (b) how the output of B
and C are correlated with b.

In more detail, the experiment is a game between the challenger and the adversary Acp = (A , B, C).

1. On input 1λ, A sends a circuit C : {0, 1}ℓinp → {0, 1}ℓout (to be obfuscated) together with two circuits
µB : {0, 1}ℓinp → {0, 1}ℓout and µC : {0, 1}ℓinp → {0, 1}ℓout . The role of µB and µC will be clear below.

2. The challenger does the following: it samples (xB , xC) from some input distribution. It then computes:
YB,0 ← C(xB), YC ,0 ← C(xC), YB,1 ← µB(xB) and, YC ,1 ← µC (xC). It also samples two bits (coinB , coinC)
from some distribution. The challenger then generates obfuscation of C∗[xB , xC , YB,coinB , YC ,coinC], where C∗ is
a circuit that on input xB , it outputs YB,coinB and on input xC , it outputs YC ,coinC and all other inputs, it behaves
exactly like C.

3. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C . The
challenger sends xB and xC to B and C , respectively.

4. B and C respectively output coin′B and coin′C .

Depending on how (xB , xC) is sampled and how the winning condition is defined, we can consider three different
security definitions:

1. Identical-secure UPO [AB24]: xB = xC and moreover, xB is sampled uniformly at random from {0, 1}ℓinp .
coinB = coinC and moreover, coinB is sampled uniformly at random. (A , B, C) wins the above experiment if
coin′B = coin′C = coinB .

2. Correlated-secure UPO [AB24]: xB and xC are independently sampled from the uniform distribution. On the
other hand, (coinB , coinC) is sampled as above. The winning condition is also defined the same as above.

3. UPO+: this is a new definition that we introduce in this work. (xB , xC) is sampled as in correlated-secure UPO.
On the other hand, coinB and coinC are sampled uniformly at random. The winning condition is defined as
follows: (A , B, C) win if (coin′B ⊕ coin′C) = (coinB ⊕ coinC). We also consider a strengthening where (xB , xC)
are sampled from a high-entropic distribution.

Ref. [AB24] constructed identical-secure and correlated-secure UPO from heuristic assumptions. The same work also
showed construction of copy-protection for long-output puncturable functionalities from correlated-secure UPO and for
subclass of evasive functionalities from identical-secure UPO.

Our Contributions. We show the following:

• UPO+implies correlated-secure UPO (Theorem 3.17).

• We show how to construct UPO+based on indistinguishability obfuscation (Section 5) and depending on whether
the inputs (xB , xC) are sampled from a high-entropic distribution or uniform we either respectively require
learning with errors or one-way functions.

Both of them combined provides the backbone to prove Theorems 1.1 and 1.2 and Section 8.1.1. We now discuss the
main ideas behind the construction of UPO+.

1.2.1 1.2.1 Construction of UPO+

We first start by recalling important properties about coset states and the monogamy properties associated with them.

6

Coset states and strong monogamy property with auxiliary input. Our construction relies on coset states and the
computational strong monogamy of entanglement property. We introduce the relevant notations following [CLLZ21,
AKL+22]. For a subspace A ⊆ Fn

2 , let

• A⊥ denote its dual,

• CanA(s) be the lexicographically least element of A + s (computable in poly(n) time),

• CS(A) := {CanA(s) : s ∈ Fn
2}.

For canonical representatives (s, t) ∈ CS(A)× CS(A⊥), define the coset state

|As,t⟩ = 1√
|A| ∑

a∈A
(−1)⟨a,t⟩ |a + s⟩ .

Applying H⊗n maps |As,t⟩ to
∣∣A⊥t,s〉.

We often write iO(A + s) and iO(A⊥ + t) to denote obfuscated programs by iO that verify membership in A + s
and A⊥ + t, respectively.

Previous work [KY25b] has shown that the following computational strong indistniguishability monogamy property
holds based on its search variant [CLLZ21, CV22]. Consider the following game played by an adversary that consists
of a tuple of algorithms (A , B, C).

1. A is given a coset state |As,t⟩, where A ⊆ Fn
2 is a uniformly random subspace of dimension n/2, and (s, t)

are uniformly drawn from CS(A)× CS(A⊥). Additionally, A receives two obfuscated membership checking
programs iO(A + s) and iO(A⊥ + t). A outputs a bipartite state q over the registers RB and RC .

2. B (resp. C) is given the register RB (resp. RC), uniformly random string rB ← Fn
2 (resp. rC ← Fn

2), and the
description of A, and outputs a bit bB (resp. bC).

3. The adversary wins if bB ⊕ bC = ⟨rB , s⟩ ⊕ ⟨rC , t⟩, where ⟨·, ·⟩ denotes the inner product.

The property guarantees that assuming that iO is a secure indistinguishability obfuscator and the existence of OWFs,
any QPT adversary can win the game with probability at most 1/2 + negl(λ).

In this work, we introduce a variant, which we call the computational strong indistinguishability monogamy property
with simulatable auxiliary input. In this variant, the adversary (A , B, C) may additionally receive auxiliary inputs that
depend on A, rB , and rC . The property guarantees that any QPT adversary can win the game with probability at most
1/2 + negl(λ), provided that A’s auxiliary input is statistically simulatable without using A, rB , or rC . The motivation
for this variant will become evident in the security proof sketch of our UPO scheme below.

We prove that this variant holds under the assumption that iO is a secure iO and there exist OWFs. The proof roughly
proceeds as follows. We first consider the information-theoretic version of the property, where obfuscated circuits are not
provided and the adversary is unbounded. In this setting, we can simulate A’s auxiliary input using the simulator without
relying on (A, rB , rC), and subsequently sample the auxiliary inputs of B and C from the corresponding conditional
distribution given (A, rB , rC) in the second stage. This “reverse sampling” may be computationally inefficient, but
efficiency is irrelevant in the information-theoretic setting. Consequently, the additional auxiliary inputs do not give the
adversary any advantage, and the problem reduces to the known version without auxiliary inputs. Finally, we lift this
argument to the computational setting by applying the technique of [CLLZ21].

Construction. Our construction of UPO is simple and closely resembles the copy-protection scheme in the classical
oracle model by Aaronson et al. [ALL+21b].

Let F be a puncturable PRF (PPRF).

• Obf (1λ, C) Sample a PPRF key K and a coset state |As,t⟩ where (s, t) ← CS(A) × CS(A⊥). Generate
obfuscated circuits

Cmc ← iO(A + s), C⊥mc ← iO(A⊥ + t).

7

P1[Cmc, C, K](a, x)

Hardwired constant: A description of a boolean circuits Cmc and C, and a string K.
Input: (a, x).

1. If Cmc(a) = 0, output ⊥. Otherwise, go to the next step.

2. Output FK(x)⊕ C(x).

Figure 1: The description of the circuit P1.

P2[C⊥mc, K](a, x)

Hardwired constant: A description of a boolean circuits C⊥mc and a string K.
Input: (a, x).

1. If C⊥mc(a) = 0, output ⊥. Otherwise, go to the next step.

2. Output FK(x).

Figure 2: The description of the circuit P2.

Then generate obfuscated circuits

P̃1 ← iO
(

P1[Cmc, C, K]
)
, P̃2 ← iO

(
P2[C⊥mc, K]

)
where P1 and P2 are circuits described in Figure 1 and Figure 2, respectively. Output C̃ := (|As,t⟩ , P̃1, P̃2).

• QEval
(

C̃ = (|As,t⟩ , P̃1, P̃2), x
)
: Starting with |As,t⟩, coherently evaluate P̃1 to obtain FK(x)⊕C(x), uncompute

to recover |As,t⟩, apply H⊗n to get
∣∣A⊥t,s〉, coherently evaluate P̃2 to obtain FK(x), take the XOR of them to get

C(x) and output it.

Correctness is immediate. We prove that it satisfies D-UPO+security for any product distribution D that has
sufficiently high min-entropy assuming the security of iO and LWE assumption.8 Below we outline the ideas for the
security proof.

Security proof sketch. We had informally defined UPO+earlier. We will more explicitly define the security experiment
below and in particular, we will also incorporate the fact that B’s and C ’s inputs are sampled from a high min-entropic
distribution. For a product distribution D = DB ×DC and a QPT adversary Acp = (A , B, C), the security experiment
of D-UPO+security works as follows.

1. On input 1λ, A sends a circuit C : {0, 1}ℓinp → {0, 1}ℓout together with two circuits µB : {0, 1}ℓinp → {0, 1}ℓout

and µC : {0, 1}ℓinp → {0, 1}ℓout .

2. The challenger does the following.

• Choose coinB ← {0, 1}, generate xB ← DB(1λ), YB,0 ← C(xB), and YB,1 ← µB(xB).

• Choose coinC ← {0, 1}, generate xC ← DC (1λ), YC ,0 ← C(xC), and YC ,1 ← µC (xC).

The challenger generates C̃ := (|As,t⟩ , P̃1, P̃2)← Obf (1λ, C∗[xB , xC , YB,coinB , YC ,coinC]) and sends C̃ to A . Here,
C∗[xB , xC , YB,coinB , YC ,coinC] is a circuit that on input xB , outputs YB,coinB and on input xC , outputs YC ,coinC and
on any other input, it behaves exactly like C.

3. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .
8While no LWE-based primitive appears in the construction, we rely on lossy functions in the security proof.

8

P′1[Cmc, C, xB , xC , K{xB , xC }, wB , wC](a, x)

Hardwired constant: Descriptions of boolean circuits Cmc andC and string (xB , xC , K{xB , xC }, wB , wC), where K{xB , xC } describes
a key for PPRF punctured at {xB , xC }.

Input: (a, x).

1. If Cmc(a) = 0, output ⊥. Otherwise, go to the next step.

2. if x = xB , output the hardwired value wB . Otherwise, go to the next step.

3. if x = xC , output the hardwired value wC . Otherwise, go to the next step.

4. Output FK{xB ,xC }(x)⊕ C(x).

Figure 3: The description of the circuit P′1.

P′2[C
⊥
mc, xB , xC , K{xB , xC }, wB , wC](a, x)

Hardwired constant: A description of a boolean circuit C⊥mc and string (xB , xC , K{xB , xC }, wB , wC), where K{xB , xC } describes a
key for PPRF punctured at {xB , xC }.

Input: (a, x).

1. If C⊥mc(a) = 0, output ⊥. Otherwise, go to the next step.

2. if x = xB , output the hardwired value wB . Otherwise, go to the next step.

3. if x = xC , output the hardwired value wC . Otherwise, go to the next step.

4. Output FK{xB ,xC }(x).

Figure 4: The description of the circuit P′2.

4. The challenger sends xB and xC to B and C , respectively.

5. B and C respectively output coin′B and coin′C . The challenger outputs 1 if coin′B ⊕ coin′C = coinB ⊕ coinC
otherwise outputs 0.

Our goal is to show that the probability that the above experiment returns 1 is negligibly close to 1/2. To prove this, we
consider the following sequence of hybrids.

First, by the standard puncturing technique, we can replace the obfuscations

P̃1 ← iO
(

P1[Cmc, C∗[xB , xC , YB,coinB , YC ,coinC], K]
)
, P̃2 ← iO

(
P2[C⊥mc, K]

)
with

iO(P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB , yC ⊕YC ,coinC]),

iO(P′2[C
⊥
mc, xB , xC , K{xB , xC}, yB , yC]),

where K{xB , xC} is a punctured PPRF key punctured on {xB , xC}, yB , yC are uniformly random, and P′1 and P′2 are the
circuits described in Figures 3 and 4, respectively.

Next, since yC is uniformly random, the distribution of yC ⊕ YC ,coinC is also uniformly random. Therefore, by
relabeling yC ⊕YC ,coinC as yC , the obfuscated circuits can be rewritten as follows:

iO(P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB , yC]),

iO(P′2[C
⊥
mc, xB , xC , K{xB , xC}, yB , yC ⊕YC ,coinC]).

Here, we introduce a trick similar to one used in [KY25b]: we replace the challenge bits coinB and coinC with
coinB ⊕ ⟨rB , s⟩ and coinC ⊕ ⟨rC , t⟩ for uniformly random rB and rC , respectively. Note that this does not change the
distribution of the challenge bits, since they are uniformly random. With this modification, the obfuscated circuits
become

iO(P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB⊕⟨rB ,s⟩, yC]),

9

iO(P′2[C
⊥
mc, xB , xC , K{xB , xC}, yB , yC ⊕YC ,coinC⊕⟨rB ,s⟩]).

The winning condition is now

coin′B ⊕ coin′C = coinB ⊕ coinC ⊕ ⟨rB , s⟩ ⊕ ⟨rC , t⟩.

What this means is that if we can somehow simulate the hybrid knowing coinB , coinC , but without knowing s or t,
then we may obtain a reduction to the computational strong indistinguishability monogamy property. Indeed, whenever
the above condition holds, we have

(coin′B ⊕ coinB)⊕ (coin′C ⊕ coinC) = ⟨rB , s⟩ ⊕ ⟨rC , t⟩.

However, the issue is that simulating the hybrid for the adversary still requires knowledge of s and t, or at least ⟨rB , s⟩
and ⟨rC , t⟩, since these bits determine which of YB,0 or YB,1 (resp. YC ,0 or YC ,1) is embedded into the obfuscated circuits.

[KY25b] resolved a similar issue in the context of SDE based on the following observation: the first (resp. second)
obfuscated circuit outputs a non-⊥ value only when the first input a belongs to A + s (resp. A⊥ + t). But given such
an element, if one knows the description of the subspace A, one can efficiently recover s (resp. t). Therefore, instead of
choosing between YB,0 and YB,1 (resp. YC ,0 and YC ,1) depending on ⟨rB , s⟩ (resp. ⟨rC , t⟩), we can let the obfuscated
circuits choose the appropriate one by deriving s (resp. t) whenever needed. This idea eliminates the need for explicitly
knowing s or t when generating the obfuscated circuits.

While this approach is sufficient in the context of SDE as in [KY25b], we still face a problem: the above idea requires
embedding the description of A and rB or rC into the obfuscated circuits. However, in the security experiment of UPO,
the obfuscated circuits must be generated in the first stage, before the state is split. On the other hand, in the experiment
for the computational strong indistinguishability monogamy property, the description of A and rB , rC are only given to
the adversary in the second stage. This creates a discrepancy. Even relying on the simulatable auxiliary-input variant of
the monogamy property, almost no information on (A, rB , rC) is available in the first stage. Thus, we need an additional
trick to simulate the obfuscated circuits without knowing (A, rB , rC).

To implement this idea, we want to ensure that whenever the first obfuscated circuit takes xB as input (resp. the
second circuit takes xC), it can internally derive (A, rB) (resp. (A, rC)), which is then used to compute ⟨rB , s⟩ (resp.
⟨rC , t⟩) as above. At the same time, the circuits should not leak any information about A or (rB , rC), so that the reduction
to the computational strong indistinguishability monogamy property with simulatable auxiliary inputs remains valid. To
reconcile these conflicting requirements, we rely on lossy functions.

Roughly, we take a lossy function F in injective mode and a universal hash function h, and embed (F(xB), h(xB)⊕
A∥rB) into the first obfuscated circuit and (F(xC), h(xC)⊕ A∥rC) into the second. The circuits are then modified
to recognize xB and xC using F(xB) and F(xC), and to recover A∥rB and A∥rC by XORing with h(xB) and h(xC),
respectively. This addresses the first requirement. For the second requirement, we instead choose F from its lossy mode,
where the image size is much smaller than the input space. Then, when xB and xC have sufficiently large min-entropy
compared to the length of A∥rB and A∥rC , they retain high min-entropy even given F(xB) and F(xC). By the leftover
hash lemma, h(xB) and h(xC) are statistically close to uniform, so almost no information about (A, rB , rC) is embedded
in the circuits. As the two modes of the lossy function are computationally indistinguishable, both requirements are
virtually satisfied. More precisely, we begin by considering the injective mode, which allows us to modify the obfuscated
circuit using the security of iO. We then rely on the indistinguishability of the two modes to switch to the lossy mode.

Here, it is essential to rely on the simulatable auxiliary input variant of the computational strong indistinguishability
monogamy property. The reason is as follows. The values (F(xB), h(xB) ⊕ A∥rB , F(xC), h(xC) ⊕ A∥rC) are
embedded in the obfuscated circuits. While these values are statistically simulatable without using (A, rB , rC) in lossy
mode as argued above, the reduction must still provide the UPO adversary with consistent xB and xC , sampled from the
corresponding conditional distribution in the second stage. The auxiliary input variant of the computational strong
indistinguishability monogamy property precisely captures this scenario: we can view (h(xB)⊕ A∥rB , h(xC)⊕ A∥rC)
as A’s auxiliary input, xB as B’s auxiliary input, and xC as C ’s auxiliary input. Therefore, the security of the UPO
scheme reduces to this property.

Alternative security proof without LWE. Our security proof outlined above relies on LWE since our construction
makes use of lossy functions. We also give an alternative proof that solely relies on the existence of iO and OWF, thus

10

avoiding the LWE assumption, in the special case where the distributions of xB and xC are uniformly random. This
proof relies on a primitive called key-robust non-committing encryption, which we introduce in this work and construct
from any keyed injective OWFs, which exist assuming iO and OWFs.

1.2.2 Copy-Protection from UPO: Two Approaches

We discuss two approaches to construct copy-protection from UPO. Before we discuss the approaches in more detail, we
will first recall the security definitions of both UPO and copy-protection:

• In the security definition of copy-protection, A receives as input copy-protection of a circuit C sampled from
some distribution. In the splitting phase, A then computes a bipartite state which it then shares with B and C .
After the splitting phase, B receives xB and C receives xC , where (xB , xC) is sampled from some distribution.
In the pseudorandom copy-protection definition, B and C additionally respectively receive yB and yC , which is
either the true function value or sampled uniformly at random. Moreover, for both (standard) copy-protection
and pseudorandom copy-protection, we can consider the stronger (called the oracular) definition wherein: (a)
(xB , xC) are sampled from a high-entropic distribution and, (b) B (resp., C) has oracle access to C punctured at
xB (resp., xC). Moreover, A also receives oracle access to C.

• In the security definition of UPO, A receives as input obfuscation of either C (if challenge bit b = 0) or C
punctured at (xB , xC) (if challenge bit b = 1), where (xB , xC) is chosen from some distribution. Here, C is
chosen by A . After the splitting phase, B receive as input xB and C receive as input xC .

The construction of copy-protection from UPO in both the approaches is the same: to copy-protect a circuit C, obfuscate
C using the UPO scheme. The evaluation algorithm of the copy-protection scheme is the same as the evaluation
algorithm of the UPO scheme.

Towards reducing copy-protection to UPO, the main step is to move from copy-protecting the circuit C to an
intermediate hybrid wherein A receives copy-protection of C (with probability 0.5) and copy-protection of C punctured
at the inputs (xB , xC) (with probability 0.5). Once we move to this intermediate hybrid we can then invoke the security
of UPO to complete the proof.

Approach 1. Pseudorandom Puncturable Functionalities (Definition 7.1). First, we start by considering copy-
protecting pseudorandom puncturable functionalities. We briefly discussed the definition of pseudorandom puncturable
functionalities in Section 1.1.

At a high level, the proof proceeds as follows: (for now, let us not consider the oracular definition mentioned above)

• In the first step, we consider the copy-protection experiment played between (A , B, C) and the challenger.

• In the second step, instead of copy-protecting C, instead copy-protect C̃ defined as follows: on input xB , it outputs
yB = C(xB) and on input xC , it outputs yC = C(xC) and on all other inputs, it behaves exactly like C. By iO
security9, this is indistinguishable from the previous step.

• In the third step,

– With probability 0.5, A gets copy-protection of C̃ (as defined in the above bullet) and,
– With probability 0.5, it gets copy-protection of C̃′, where C̃′ is the same as C̃ except that yB and yC are

sampled uniformly at random.

The indistinguishability of the second and third step follows from the pseudorandom puncturing security.

• Finally, in the fourth step,

– With probability 0.5, A gets copy-protection of C (as against C̃ in the above step)
– With probability 0.5, it gets copy-protection of C̃′, where C̃′ is as defined above.

9Due to the composition theorem of [AB24], we can assume without loss of generality, an UPO scheme satisfies iO security.

11

Since the functionality of C̃ is exactly the same as the functionality of C, the indistinguishability of the third and
fourth step follows from iO security.

Once we reach the fourth step, we can then invoke the UPO security to complete the proof since the fourth step
corresponds to the security experiment of UPO.

While this proof template can be suitably expanded to get a full fledged proof, this is inadequate for the stronger
oracular definition. The reason being that since A , B and, C now can compute C on additional inputs owing to the fact
that they have access to an oracle that computes C; note that the oracles that B and C receive access to disallow queries
respectively on xB and xC . Fortunately, we leverage standard techniques [BBBV97b] combined with the observation
that in the UPO security experiment, B and C know the circuit description C in the clear, to show that even the stronger
oracular definition is satisfied.

Approach 2. Progmaskable Functionalities (Definition 8.4). We consider another class of functionalities, called
progmaskable functionalities. We consider a simplified version of the definition below. At a high level, a function class
is progmaskable (with respect to appropriate distributions over the circuit class and input distributions) if the following
two distributions are computationally indistinguishable:

• (C, x), where C is sampled from a distribution over the circuit class and x is sampled from a distribution over the
input class.

• (C̃, x), where x is sampled from some input distribution (potentially different from the one considered in the first
bullet) and C̃ is sampled as follows: first sample C as in the first bullet, then sample y from some distribution that
depends on (x, C) and then C̃ is defined to be the same as C except on input x, it outputs y. In other words, C̃ is
obtained by programming the output of C on x to be y.
The distribution over y is important: we consider the half-correct distribution where y = C(x) with probability
0.5 and y is sampled uniformly at random subject to the condition that y ̸= C(x), i.e., y is correct with probability
0.5.

The indistinguishability of the above two distributions implies that given the programmed C̃, it is both computationally
hard to find the true output of C on x, and also that (C, x) can be masked as (C̃, x).

In the more general definition (Definition 8.4), we consider multiple inputs x1, . . . , xℓ instead of just one input.
Progmaskable functionalities capture a large class of functionalities, such as pseudorandom puncturable functionalities
(Theorem 8.18) and k-point functions (Theorem 8.9)10.

The proof of security for copy-protecting progmaskable functionalities proceeds as follows:

• In the first step, we consider the copy-protection experiment played between (A , B, C) and the challenger. That is,
A receives copy-protection of C, B receives xB and C receives xC .

• In the second step, A receives copy-protection of C̃, where C̃ is a circuit that behaves the same as C except that
on input xB , it outputs yB and on input xC , it outputs yC . Here, yB and yC are sampled from the half-correct
distribution. That is,

– With probability 0.5, yB = C(xB) and yC = C(xC),
– With probability 0.5, yB and yC are sampled from the uniform distribution subject to the condition that

yB ̸= C(xB) and yC ̸= C(xC).

Moreover, B receives xB and C receives xC .
The indistinguishability of the first and the second step follows from the progmaskable security.

• In the third and final step, we do the following:

– With probability 0.5, A receives copy-protection of C,
10In fact, they capture an even larger class of functionalities called preimage-sampleable evasive functionalities introduced in [AB24], see

Theorem 8.6 for the formal statement.

12

– With probability 0.5, A receives copy-protection of C̃ where C̃ is the same as in the second step except that
yB and yC are always sampled from the uniform distribution subject to the condition that yB ̸= C(xB) and
yC ̸= C(xC). In particular, yB and yC are not sampled from the uniform distribution.

We can now immediately reduce the third step to the security of UPO, which completes the proof.
As before this proof template does not work for the oracular definition and we need to invoke quantum query lower

bounds [BBBV97b] in order to show that the stronger definition is satisfied.
As mentioned before, progmaskable functionalities capture pseudorandom puncturable functionalities (Theorem 8.18).

As a result, (unpredictable-style) copy-protection of progmaskable functionalities implies (unpredictable-style) copy-
protection of 1-bit output (unpredictable-style) puncturable functionalities (leading us to the second bullet of Theorem 1.1).
11 The same approach yields non-trivial bound of 1/2-security but not full security for copy-protection of m-bit
output pseudorandom puncturable functionalities, for m > 1, because we only get copy-protection of progmaskable
functionalities with bound 1/2 on adversarial success probability, which amounts to full security in 1-bit output setting
but may not provide full security for m > 1. We leave the question of strengthening the copy-protection of progmaskable
m-bit functionalities to get a bound of 1/2m on adversarial success probability as an open question.

UPO+ Correlated-secure
UPO

iO, LWE

Heuristic Assumptions

Copy-Protection for
Long output

Puncturable functionalities

Pseudorandom Copy-Protection for
Pseudorandom Puncturable

Functionalities

Copy-Protection for
Progmaskable
Functionalities

Copy-Protection for 1-bit
Puncturable Functionalities

Copy-Protection for
k-Point (poly k > 1)

Functions

Identical-secure
UPO

Heuristic Assumptions

Section 5

Theorem 3.17

Ref. [AB24]

Ref. [AB24]

Section 7.2 Section 8.2

Section 8.1.1

Ref. [AB24]Ref. [AB24]

Section 8.3

11We also use the fact that unpredictable-style and pseudorandom-style puncturing security are equivalent in the 1-bit output setting (see Lemma 7.3).

13

1.2.3 Concurrent and Independent Work

A couple of works [ÇG25a, ÇG25b] concurrently also address the problem of copy-protecting pseudorandom puncturable
functionalities under high min-entropic distributions. However, their approach is different, and in particular, they do not
go through the route of unclonable puncturable obfuscation.

2 Preliminaries
Notations and conventions. In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or
Gen) and classical variables (e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic
font and/or the bracket notation for (mixed) quantum states (e.g., q or |ψ⟩).

Let [ℓ] denote the set of integers {1, · · · , ℓ}, λ denote a security parameter, and y := z denote that y is set to be,
defined, or substituted by z. For any finite set X, we use |X| to denote the size of X, and for any ℓ ∈ N such that
ℓ ≤ |X|, we use (X

ℓ) to denote the set of all ℓ-element subsets of X. For a finite set X and a distribution D, x ← X or

x $←− X denotes selecting an element from X uniformly at random, x ← D denotes sampling an element x according to
D. Moreover, UniformX denotes the uniformly random distribution on the set X. Let y← A(x) and y← A(x) denote
assigning to y the output of a probabilistic or deterministic algorithm A and a quantum algorithm A on an input x and x ,
respectively. When we explicitly show that A uses randomness r, we write y ← A(x; r). PPT and QPT algorithms
stand for probabilistic polynomial-time algorithms and polynomial-time quantum algorithms, respectively. Let negl
denote a negligible function, non-negl denote a non-negligible function, and poly denote a positive polynomial. For
a string x ∈ {0, 1}n, x[i] is its i-th bit. For strings x, y ∈ {0, 1}n, ⟨x, y⟩ denotes

⊕
i∈[n] x[i] · y[i]. We often use the

similar notation for vectors x, y ∈ Fn
2 by identifying elements of F2 and {0, 1} in the natural manner. For reals x, y and

δ > 0 , we write x ≈δ y to mean |x− y| ≤ δ.
We use gray sans serif font (e.g., X) to stand for a quantum register. For a quantum state q over registers R1 and R2,

we write q [R1] to denote the portion of the state on register R1. Similarly, for a pure quantum state |ψ⟩ over registers R1
and R2, we write |ψ⟩R1

to denote the portion of the state on register R1. For quantum states q and q ′, ∥q − q ′∥tr denotes
their trace distance. For any classical circuit C : {0, 1}n → {0, 1}m, and a subset of inputs S ⊂ {0, 1}n, we denote
C \ S to be the circuit that on every input x ∈ S, outputs ⊥, and on every input x ∈ {0, 1}n \ S, outputs C(x). Finally,
for any classical circuit C : {0, 1}n → {0, 1}m, and a quantum algorithm A , we say that a QPT A has oracle access to
C, if A has two special quantum query registers, a n-qubit input register I and a m-qubit output register O, such that
during it’s execution, A can make polynomially many queries to C in superposition, where each superposition query
corresponds to the following: A sends the registers I and O to the oracle, on which the oracle applies the unitary version
of C, UC := ∑x∈{0,1}n |x⟩⟨x|I ⊗∑y∈{0,1}m |y⊕ C(x)⟩⟨y|O, and sends the registers back to A .

2.1 Quantum Query Lower Bound
Theorem 2.1 ([BBBV97a]). Let A be an adversary with oracle access to H : {0, 1}m → {0, 1}n that makes at most T
queries. Define |ϕi⟩ as the global state after A makes i queries, and Wy(|ϕi⟩) as the sum of squared amplitudes in |ϕi⟩
of terms in which A queries H on input y. Let ϵ > 0 and let F ⊆ [0, T− 1]× {0, 1}m be a set of time-string pairs such
that ∑(i,y)∈F Wy(|ϕi⟩) ≤ ϵ2/T.

Let H′ be an oracle obtained by reprogramming H on inputs (i, y) ∈ F to arbitrary outputs. Define
∣∣ϕ′i〉 as above

for H′. Then, TD (|ϕT⟩⟨ϕT |, |ϕ′T⟩⟨ϕ′T |) ≤ ϵ/2.

2.2 Min-Entropy, Universal Hash Functions, and Leftover Hash Lemma
The min-entropy of a classical random variable X is defined as

H∞(X) := − log
(

max
x

Pr[X = x]
)

.

We often say that a distribution D over classical strings has min-entropy p if a classical random variable X according to
the distribution D has min-entropy p.

14

The average min-entropy of a classical random variable X conditioned on another classical random variable Z is
defined as

H̃∞(X | Z) := − log
(

Ez←Z max
x

Pr[X = x | Z = z]
)

.

The chain rule states that if Z is a random variable over ℓ-bit strings, then

H̃∞(X | Z) ≥ H∞(X)− ℓ.

A family of functionsH : X → Y is said to be universal, if it holds that for all x, x′ ∈ X such that x ̸= x′, we have

Lemma 2.2 (Leftover Hash Lemma). LetH : X → Y be a universal hash function family. For (possibly correlated)
classical random variables X and Z such that H̃∞(X | Z) ≥ log |Y|+ 2 log

(
1
ϵ

)
, the statistical distance between

{h, h(X), Z)} and {h, Y, Z)}

is at most ϵ, where h← H and Y is uniformly random in Y .

2.3 Classical Cryptographic Primitives
Indistinguishability obfuscation

Definition 2.3 (Indistinguishability Obfuscator [BGI+12]). A PPT algorithm iO is a secure indistinguishabilitu
obfuscation (iO) for a classical circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality preserving: For any security parameter λ ∈N, circuit C ∈ Cλ, and input x, we have that

Pr
[
C′(x) = C(x) | C′ ← iO(C)

]
= 1 .

Indistinguishability: For any QPT Sampler that outputs two circuits C0, C1 ∈ Cλ along with a quantum auxiliary
information aux and QPT distinguisher A , the following holds:
If Pr

[
∀x C0(x) = C1(x) ∧ |C0| = |C1| | (C0, C1, aux)← Sampler(1λ)

]
> 1− negl(λ), then we have

Advio
iO,D(λ) :=

∣∣∣Pr
[

A(iO(C0), aux) = 1 | (C0, C1, aux)← Sampler(1λ)
]

−Pr
[

A(iO(C1), aux) = 1 | (C0, C1, aux)← Sampler(1λ)
]∣∣∣ ≤ negl(λ).

There are several candidates of secure iO for polynomial-size classical circuits against quantum adversaries [BGMZ18,
CHVW19, AP20, BDGM20, WW21, GP21, DQV+21, BDGM22, BDJ+24, HJL25, CLW25].

Pseudorandom functions.

Definition 2.4 (Puncturable PRF). A puncturable PRF (PPRF) is a tuple of algorithms PPRF = (PRF.Gen, F, Puncture)
where {FK : {0, 1}ℓinp → {0, 1}ℓout | K ∈ {0, 1}λ} is a PRF family and satisfies the following two conditions.

Punctured correctness: For any polynomial-sized set S ⊆ {0, 1}ℓinp and any x ∈ {0, 1}ℓinp \ S, it holds that

Pr
[
FK(x) = FK{S}(x) | K ← PRF.Gen(1λ), K{S} ← Puncture(K, S)

]
= 1.

Pseudorandom at punctured point: For any polynomial-sized set S ⊆ {0, 1}ℓinp and any QPT distinguisher A , it
holds that

|Pr
[

A(FK{S}, {FK(xi)}xi∈S)→ 1
]
− Pr

[
A(FK{S}, (Uℓout)

|S|)→ 1
]
| ≤ negl(λ),

where K ← PRF.Gen(1λ), K{S} ← Puncture(K, S) and Uℓout denotes the uniform distribution over {0, 1}ℓout .

15

If S = {x∗1 , x∗2 , . . . , x∗n} for some n ∈ N, we simply denote the punctured key by K{x∗1 , x∗2 , . . . , x∗n} instead of
K{{x∗1 , x∗2 , . . . , x∗n}}.

Goldwasser-Goldreich-Micali tree-based construction of PRFs (GGM PRF) [GGM86] from OWF yield puncturable
PRFs where the size of the punctured key grows polynomially with the size of the set S being punctured [BW13, BGI14,
KPTZ13].

Keyed injective one-way functions.

Definition 2.5 (Keyed Injective D-One-Way Functions). Let D be a distribution over {0, 1}ℓinp . A keyed injective
D-one-way function IOWF is given by a PPT algorithm Gen that takes 1λ as input, and outputs a description of a
classical-polynomial-time-computable function F : {0, 1}ℓinp → {0, 1}ℓout . It satisfies the following properties.

Injectivity: With overwhelming probability over the choice of F← Gen(1λ), F is injective.

D-One-Wayness: For all QPT algorithms A ,

Pr
[
F(x′) = F(x) | F← Gen(1λ), x ← D, x′ ← A(1λ, F, F(x))

]
= negl(λ).

For the uniform distribution U, keyed injective U-one-way functions exist assuming the existence of iO and
OWFs [BPW16]. Moreover, assuming the LWE assumption, for any distribution D that has min-entropy at least λc for
some constant c > 0, there exist keyed injective D-one-way functions. This directly follows from the construction of
lossy functions from LWE [PW11] (Theorem 2.7).

Lossy functions.

Definition 2.6 (Lossy Functions). A collection of (ℓinp, ℓloss)-lossy functions LF is given by a pair of two PPT algorithms
(Geninj, Genloss).

• The injective function generation algorithm Geninj takes the security parameter 1λ as an input, and outputs a
description of a classical-polynomial-time-computable injective function Finj over the domain {0, 1}ℓinp .

• The lossy function generation algorithm Genloss takes the security parameter 1λ as an input, and outputs a
description of a classical-polynomial-time-computable function Floss over the domain {0, 1}ℓinp whose image size
is at most 2ℓinp−ℓloss .

LF satisfies the following mode indistinguishability.

Mode Indistinguishability: We have Finj
c≈ Floss, where Finj ← Geninj(1λ) and Floss ← Genloss(1λ).

It is known that lossy functions can be constructed assuming the hardness of LWE [PW11]. The following
formulation is adapted from [CLLZ21].

Theorem 2.7 ([PW11]). Assuming the polynomial hardness of LWE, for any constant c > 0, there exists a collection of
(ℓinp, ℓloss)-lossy functions such that ℓinp − ℓloss ≤ ℓc

inp.

2.4 Quantum Goldreich-Levin
Ananth et al. [AKY25] extended the quantum Goldreich-Levin lemma [AC02, CLLZ21] to the non-local setting, where
two non-communicating algorithms with potentially entangled quantum inputs are involved.12.

12A slightly weaker version is also proven in [AKL23]

16

Lemma 2.8 (Simultaneous Quantum Goldreich-Levin [AKY25]). There exists a QPT oracle algorithm Ext that
satisfies the following. Let n ∈N, xB , xC ∈ {0, 1}n, ϵ ∈ [0, 1/2], and q be a quantum state over registers RB and RC .
Let B (resp. C) be a quantum algorithm that takes RB (resp. RC) and an n-bit string rB (resp. rC) as input, and outputs
a bit. If we have

Pr

bB ⊕ bC = ⟨rB , xB⟩ ⊕ ⟨rC , xC ⟩ :
rB , rC ← {0, 1}n

bB ← B(q [RB], rB)
bC ← C (q [RC], rC)

 ≥ 1
2
+ ϵ,

then, we have

Pr [Ext(B, q [RB])→ xB ∧ Ext(C , q [RC])→ xC] ≥ 4ϵ2.

where B and C in the input of Ext mean their descriptions.

Lemma 2.8 was originally proven in [AKY25, Lemma 5] for the special case of xB = xC . However, their proof
does not rely on this assumption, and the same argument holds for the more general case where xB ̸= xC , as observed in
[KY25b].

2.5 Useful Lemma
The following lemma is implicit in [AKY25]

Lemma 2.9. Let E0, E1, E2 be events and 0 < δ < 1. If Pr[E0] = 1/2, Pr[E1 | E0] ≈δ Pr[E1 | ¬E0], and
Pr[E2 | E0] ≈δ Pr[E2 | ¬E0], then it holds that

Pr[E1 ∧ E2] + Pr[¬E1 ∧ ¬E2] ≈δ Pr[E1 ∧ E2 | E0] + Pr[¬E1 ∧ ¬E2 | ¬E0].

Proof. By the assumptions, we have

Pr[E1 | E0] + Pr[¬E1 | ¬E0] ≈δ 1

and

Pr[E2 | E0] + Pr[¬E2 | ¬E0] ≈δ 1.

Then we have

Pr[E1 ∧ E2 | E0] + Pr[¬E1 ∧ ¬E2 | ¬E0]

= (Pr[E1 | E0]− Pr[E1 ∧ ¬E2 | E0]) + (Pr[¬E1 | ¬E0]− Pr[¬E1 ∧ E2 | ¬E0])

≈δ 1− Pr[E1 ∧ ¬E2 | E0]− Pr[¬E1 ∧ E2 | ¬E0]))

= 1− (Pr[¬E2 | E0]− Pr[¬E1 ∧ ¬E2 | E0])− (Pr[E2 | ¬E0]− Pr[E1 ∧ E2 | ¬E0])

≈δ Pr[¬E1 ∧ ¬E2 | E0]) + Pr[E1 ∧ E2 | ¬E0].

Thus, we have

Pr[E1 ∧ E2] + Pr[¬E1 ∧ ¬E2]

=
1
2
(Pr[E1 ∧ E2 | E0] + Pr[E1 ∧ E2 | ¬E0]) +

1
2
(Pr[¬E1 ∧ ¬E2 | E0] + Pr[¬E1 ∧ ¬E2 | ¬E0])

=
1
2
(Pr[E1 ∧ E2 | E0]) + Pr[¬E1 ∧ ¬E2 | ¬E0]) +

1
2
(Pr[¬E1 ∧ ¬E2 | E0] + Pr[E1 ∧ E2 | ¬E0])

≈δ
1
2
(Pr[¬E1 ∧ ¬E2 | E0] + Pr[E1 ∧ E2 | ¬E0]) +

1
2
(Pr[¬E1 ∧ ¬E2 | E0] + Pr[E1 ∧ E2 | ¬E0])

= Pr[¬E1 ∧ ¬E2 | E0]) + Pr[E1 ∧ E2 | ¬E0]

17

3 Definitions
3.1 Definition of Copy-Protection
First, we review the existing definition, which we refer to as unpredictability-style copy-protection.

Definition 3.1 (Oracular Unpredictability-Style Copy-Protection). Let Circ = {Ck}k∈Kλ
be a family of keyed

circuits with n-bit inputs and m-bit outputs. A copy-protection scheme for Circ is a pair of two algorithms CP =
(CopyProtect , Eval).

CopyProtect(1λ, Ck)→ C̃ : The copy-protection algorithm is a QPT algorithm that takes a security parameter 1λ and a
circuit Ck ∈ Circ, and outputs a quantum state C̃ .

Eval (C̃ , x)→ y: The evaluation algorithm is a QPT algorithm that takes a quantum state C̃ and an input x ∈ {0, 1}n,
and outputs a value y.

Evaluation correctness: For every k ∈ Kλ and x ∈ {0, 1}n, we have

Pr
[
Eval (C̃ , x) = Ck(x)

∣∣ C̃ ← CopyProtect(1λ, Ck)
]
= 1− negl(λ).

Oracular Unpredictability-Style Copy-Protection Anti-Piracy: For a distribution D over Kλ × {0, 1}n × {0, 1}n,
consider the following game Expunp-cp

CP,D,Acp
(λ) between the challenger and an adversary Acp = (A , B, C) below.

1. The challenger chooses (k, x∗1 , x∗2) ← D, generates C̃ ← CopyProtect(1λ, Ck), and sends C̃ , as well as
oracle access to Ck to A (see Section 2 (on Page 14) for the formal definiton of oracle access).

2. ACk creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to
C .

3. The challenger sends x∗1 and oracle access to Ck \ {x∗1} to B and sends x∗2 and oracle access to Ck \ {x∗2}
to C , where for any circuit Ck and set S ⊂ X, Ck \ S denotes the circuit that for any input x ∈ S outputs ⊥,
and for every x ∈ X \ S outputs Ck(x).

4. BCk\{x∗1} and C Ck\{x∗2} respectively output yB and yC . The challenger outputs 1 if yB = Ck(x∗1) ∧ yC =
Ck(x∗2) otherwise outputs 0.

We say that CP satisifies oracular-D-unpredictability-style-CP anti-piracy, or simply, oracular-D-CP anti-
piracy, for Circ if for any QPT adversary Acp, there exists a trivial adversary A triv

cp ∈ Triv
(

Expunp-cp
CP,D

)
and a

negligible function negl(·) it holds that

Pr
[
Expunp-cp

CP,D,Acp
(λ) = 1

]
≤ Pr

[
Expunp-cp

CP,D,A trivcp
(λ) = 1

]
+ negl(λ),

where Triv
(

Expunp-cp
CP,D

)
:= Triv1

(
Expunp-cp

CP,D

)
∪ Triv2

(
Expunp-cp

CP,D

)
where for every i ∈ [2],

Trivi
(

Expunp-cp
CP,D

)
:= {(A i

triv, B, C) | B, C : QPT adversaries},

where A1
triv (respectively, A2

triv) is the adversary that on receiveing a state q sends the state to B (respectively, C),
and sends |⊥⟩⟨⊥| to C (respectively, B).
Similarly, we say that CP satisfies D-unpredictability-style-CP anti-piracy, if the same holds as above, but in
the absence of any oracle access to the adversaries.

Moreover, for any noticeable function α(·), we say that a copy-protection scheme CP satisifies α(λ)-oracular-D-
unpredictability-style-CP anti-piracy for Circ, if for any QPT adversary Acp, it holds that

Pr
[
Expunp-cp

CP,D,Acp
(λ) = 1

]
≤ α(λ) + negl(λ),

for some negligible function negl(·).

18

Remark 3.2. In this work, unless specified otherwise, for most circuit classes with n(λ)-bit input and m(λ)-bit output,
especially the ones satisfying some form of puncturable security (see Definition 7.1), we will show 1/2m(λ)-oracular-D-
unpredictability-style-CP anti-piracy for some appropriate distribution D. This is the best possible result since there
always exists a trivial adversary, (A1

triv, B1
triv, C 1

triv) that wins with probability 1/2m(λ), where A1
triv is as defined in

Definition 3.1, and B1
triv just honestly evaluates the circuit on the respective challenge point by running Eval on the state

received, and C 1
triv outputs a uniformly random guess.

Next, we define pseudorandomness-style copy-protection, which is a generalization of the indistinguishability-based
copy-protection definition defined in [CLLZ21] for pseudorandom functions.

Definition 3.3 (Oracular Pseudorandomness-Style Copy-Protection Anti-piracy). Let Circ = {Ck}k∈Kλ
be a family

of keyed circuits with n-bit inputs and m-bit outputs, and let CP = (CopyProtect , Eval) be a copy-protection scheme for
Circ with the same syntax and evaluation correctness as in Definition 3.1.

For a distribution D over Kλ × {0, 1}n × {0, 1}n, consider the following correlated pseudrandomness-style
copy-protection anti-piracy game Expcorrelated-pr-cp

CP,D,Acp
(λ) between the challenger and an adversary Acp = (A , B, C)

below.

1. The challenger chooses (k, x∗1 , x∗2)← D(1λ), generates C̃ ← CopyProtect(1λ, Ck), and sends C̃ as well as oracle
access to Ck to A .

2. ACk creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

3. The challenger chooses coin $←− {0, 1}, and for every i ∈ [2] sets y0
i := Ck(x∗i), and chooses y1

i
$←− {0, 1}m.

The challenger sends (x∗1 , ycoin
1) and oracle access to C \ {x∗1} to B and sends (x∗2 , ycoin

2) and oracle access to
C \ {x∗2} to C .

4. BC\{x∗1} and C C\{x∗2} respectively output coin′B and coin′C . The challenger outputs 1 if coin′B = coin′C = coin
otherwise outputs 0.

We say that CP satisfies oracular-D-pseudorandomness-style-CP anti-piracy for Circ, if for any QPT adversary
Acp, it holds that

Pr
[
Expcorrelated-pr-cp

CP,D,Acp
(λ) = 1

]
≤ 1

2
+ negl(λ),

for some negligible function negl(·).

Next, we introduce a strengthening of pseudorandomness-style copy-protection by adopting the “+”-style formulation
introduced by [KY25b] in the context of SDE.

Definition 3.4 (Oracular Pseudorandomness-Style Copy-Protection plus Anti-piracy). Let Circ = {Ck}k∈Kλ
be a

family of keyed circuits with n-bit inputs and m-bit outputs, and let CP = (CopyProtect , Eval) be a copy-protection
scheme for Circ with the same syntax and evaluation correctness as in Definition 3.1.

For a distribution D overKλ × {0, 1}n × {0, 1}n, consider the following independent pseudrandomness-style copy-
protection-plus anti-piracy game Expindependent-pr-cp+

CP,D,Acp
(λ) between the challenger and an adversary Acp = (A , B, C)

below.

1. The challenger chooses (k, x∗1 , x∗2) ← D, generates C̃ ← CopyProtect(1λ, Ck), and sends C̃ as well as oracle
access to Ck to A .

2. ACk creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

3. The challenger chooses coinB , coinC
$←− {0, 1}, and for every i ∈ [2] sets y0

i := Ck(x∗i), and chooses

y1
i

$←− {0, 1}m. The challenger sends (x∗1 , ycoinB
1) and oracle access to C \ {x∗1} to B and sends (x∗2 , ycoinC

2) and
oracle access to C \ {x∗2} to C .

19

4. BC\{x∗1} and C C\{x∗2} respectively output coin′B and coin′C . The challenger outputs 1 if coin′B ⊕ coin′C =
coinB ⊕ coinC , otherwise outputs 0.

We say that CP satisfies oracular-D-pseudorandomness-style-CP+ anti-piracy for Circ, if for any QPT adversary
Acp, it holds that

Pr
[
Expindependent-pr-cp+

CP,D,Acp
(λ) = 1

]
≤ 1

2
+ negl(λ),

for some negligible function negl(·).

Relationships. We explore the relationships between the different notions of copy-protection below.

Lemma 3.5. If a copy-protection scheme CP satisfies oracular-D-pseudorandomness-style-CP+ anti-piracy (Definition 3.4)
for a circuit class Circ, then it also satisfies oracular-D-pseudorandomness-style-CP anti-piracy (Definition 3.3), i.e.,
without the “+” anti-piracy.

Proof of Lemma 3.5. The proof is analogous to that of the implication from CPA+anti-piracy to Diden-bit,ind-msg-CPA
anti-piracy for SDE given in [KY25b, Theorem 6.20].

Let Acp = (A , B, C) be any adversary for oracular-D-pseudorandomness-style-CP anti-piracy (Definition 3.4)
against CP for the circuit class Circ.

It is enough to prove that

Pr
[
Expcorrelated-pr-cp

CP,D,Acp
(λ) = 1

]
≤ Pr

[
Expindependent-pr-cp+

CP,D,Acp
(λ) = 1

]
.

In an execution of Expindependent-pr-cp+
CP,D,Acp

(λ), let coinB and coinC be the challenge bits chosen by the challenger for
B and C and coin′B and coin′C be the outputs of B and C , respectively. Let EB be the event that coin′B = coinB , EC be
the event that coin′C = coinC , and Eiden-bit be the event that coinB = coinC . Clearly, we have

Pr
[
Expindependent-pr-cp+

CP,D,Acp
(λ) = 1

]
= Pr[EB ∧ EC] + Pr[¬EB ∧ ¬EC]

and
Pr
[
Expcorrelated-pr-cp

CP,D,Acp
(λ) = 1

]
= Pr[EB ∧ EC | Eiden-bit].

Next, note that by definition of the security game Expindependent-pr-cp+
CP,D,Acp

(λ),

Pr[EB | Eiden-bit] = Pr[EB | ¬Eiden-bit]

and
Pr[EC | Eiden-bit] = Pr[EC | ¬Eiden-bit].

Also, clearly we have Pr[Eiden-bit] = 1/2. Thus, by Lemma 2.9, we have

Pr[EB ∧ EC] + Pr[¬EB ∧ ¬EC]

=Pr[EB ∧ EC | Eiden-bit] + Pr[¬EB ∧ ¬EC | ¬Eiden-bit] ≥ Pr[EB ∧ EC | Eiden-bit].

Thus, we have
Pr
[
Expcorrelated-pr-cp

CP,D,Acp
(λ) = 1

]
≤ Pr

[
Expindependent-pr-cp+

CP,D,Acp
(λ) = 1

]
,

which completes the proof of Lemma 3.5.

Remark 3.6. In Definition 3.3, we considered a correlated version where the challenge points for B and C could be
different, but the challenge coin is the same for both. We can even consider an independent version where the coins for
B and C are also sampled independently, but note that this version immediately follows from the plus security. Since
our constructions of copy-protection with pseudorandomness-style copy-protection anti-piracy directly satisfy the plus
security, we also obtain the independent version of Definition 3.3 for our constructions.

20

It is easy to see that pseudorandomness-style anti-piracy security implies unpredictability-style anti-piracy security
if m = ω(log λ).

Lemma 3.7 (Pseudorandomness Implies Unpredictability ω(log λ)-Bit Circuits). Let Circ be a circuit class with
output length m = ω(log λ), then for any copy-protection scheme CP for Circ, oracular-D-pseudorandomness-style-CP
anti-piracy implies oracular-D-unpredictability-style-CP anti-piracy.

Proof of Lemma 3.7. Let Acp = (A , B, C) be any adversary for oracular-D-unpredictability-style-CP anti-piracy
(Definition 3.3) against CP for the circuit class Circ. We construct a reduction adversary R := (A ,RB ,RC) in the
correlated psedurandomness-style anti-piracy game, whereRB (respectively,RC) on receiveing a state σB (respectively,
σC) fromRA , and challenge (x1, y1) (respectively, (x2, y2)) and oracle access to Ck \ {x1} (respectively, Ck \ {x2})
runs y′1 ← B(σB, x1) (respectively, y′2 ← C (σC, x2)), and outputs 0 if y′1 = y1 (respectively, y′2 = y2) and 1 otherwise.
Let coin be the challenge bit in the correlated pseudorandomness-style anti-piracy game, Expcorrelated-pr-cp

CP,D,R (λ). Note
that by description of (RB ,RC), in the coin = 1 event of Expcorrelated-pr-cp

CP,D,R (λ), for each i ∈ [2], the probability that
y′i = yi is 1/2m. Hence,

Pr[1← RB ∧ 1← RC | coin = 1] = Pr
[
y′i ̸= yi∀i ∈ [2] | coin = 1

]
≥ 1− 2

2m = 1− 1
2m−1 .

Next, clearly, the view of the adversaries B and C in the simulated game is the same as in the unpredictability-style
anti-piracy game Expunp-cp

CP,D,Acp
(λ), and hence, conditioned on coin = 0, i.e., yi = Ck(xi) for both i ∈ [2], we get that

the event y′i = yi for every i ∈ [2] exactly corresponds to the winning event in the unpredictability-style anti-piracy
game Expunp-cp

CP,D,Acp
(λ). Hence,

Pr[0← RB ∧ 0← RC | coin = 0] = Pr
[
y′i = yi∀i ∈ [2] | coin = 0

]
= Pr

[
Expunp-cp

CP,D,Acp
(λ) = 1

]
.

Combining the last two equations, we conclude that

Pr
[
Expcorrelated-pr-cp

CP,D,R (λ) = 1
]
≥

Pr
[
Expunp-cp

CP,D,Acp
(λ) = 1

]
+ 1− 1

2m−1

2
. (1)

Since we assume that CP satisfies oracular-D-pseudorandomness-style-CP anti-piracy, there exists a negligible
function negl(·) such that

Pr
[
Expcorrelated-pr-cp

CP,D,R (λ) = 1
]
≤ 1

2
+ negl(λ).

Combining last equation with (1), we conclude that,

1/2 + negl(λ) ≥ Pr
[
Expcorrelated-pr-cp

CP,D,R (λ) = 1
]
≥

Pr
[
Expunp-cp

CP,D,Acp
(λ) = 1

]
+ 1− 1

2m−1

2
.

Hence, we conclude that,
Pr
[
Expunp-cp

CP,D,Acp
(λ) = 1

]
≤ 1/2m−1 + 2negl(λ),

which is negligible in λ since m(λ) ∈ ω(log(λ)).

Remark 3.8. If the output length m of the circuit class Circ satisfies m ≤ O(log(λ)), then for any copy-protection scheme
CP for Circ, oracular-D-pseudorandomness-style-CP anti-piracy implies α(λ)-oracular-D-unpredictability-style-CP
anti-piracy for some non-negligible but non-trivial bound α(λ).

21

3.2 Definitions of Unclonable Puncturable Obfuscation
Next, we recall the definition of the main tool used in this work to achieve our main results.

Definition 3.9 (Unclonable Puncturable Obfuscation (UPO) [AB24]). A UPO scheme UPO for the circuit class
Circ = {C : {0, 1}ℓcin → {0, 1}ℓcout} is a pair of two algorithms (Obf , Eval).

Obf (1λ, C)→ C̃ : The obfuscation algorithm is a QPT algorithm that takes a security parameter 1λ and a circuit
C ∈ Circ, and outputs a quantum state C̃ .

Eval (C̃ , x)→ y: The evaluation algorithm is a QPT algorithm that takes a quantum state C̃ and an input x ∈ {0, 1}ℓcin ,
and outputs a value y.

Evaluation correctness: For every C ∈ Circ and x ∈ {0, 1}ℓcin , we have

Pr
[
Eval (C̃ , x) = C(x)

∣∣ C̃ ← Obf (1λ, C)
]
= 1− negl(λ).

We say that it satisfies perfect correctness if the above probability is 1.

Evaluation correctness implies the reusability of the quantum obfuscated state ρC thanks to the gentle measurement
lemma.

To define the security notions of UPO, we first introduce notation for punctured circuits.

Definition 3.10 (Punctured Circuit). Let C : {0, 1}ℓcin → {0, 1}ℓcout be a circuit. Let xB , xC ∈ {0, 1}ℓcin and
yB , yC ∈ {0, 1}ℓout . We define the punctured circuit C∗[xB , xC , yB , yC] as follows:

• If xB ̸= xC ,

C∗[xB , xC , yB , yC](x) =


C(x), x ∈ {0, 1}ℓcin \ {xB , xC}
yB , x = xB

yC , x = xC

.

• If xB = xC ,

C∗[xB , xC , yB , yC](x) =

{
C(x), x ∈ {0, 1}ℓcin \ {xB}
yB , x = xB

.

Note that there exists a canonical algorithm Programcanonical to perform the above-described puncturing for any
circuit class Circ, i.e., given a circuit key/index from Circ, Programcanonical outputs the circuit that has C hardcoded
using which it outputs according to C∗[xB , xC , yB , yC].

First, we recall two security notions introduced in [AB24]: UPO security and generalized UPO security.13

Definition 3.11 (D-Generalized UPO Security [AB24]). Let UPO = (Obf , Eval) be a UPO scheme for the circuit
class Circ = {C : {0, 1}ℓcin → {0, 1}ℓcout}. Let D be a distribution over {0, 1}ℓcin × {0, 1}ℓcin . We consider the
D-generalized UPO anti-piracy game Expgen-upo

UPO,D,Acp
(λ) between the challenger and an adversary Acp = (A , B, C)

below.

1. On input 1λ, A sends C ∈ Circ together with two circuits µB : {0, 1}ℓcin → {0, 1}ℓcout and µC : {0, 1}ℓcin →
{0, 1}ℓcout to the challenger.

2. The challenger generates coin← {0, 1}, (xB , xC)← D, and generates C̃ as follows:

• If coin = 0, C̃ ← Obf (1λ, C).

13In [AB24], UPO security is introduced first, followed by its generalization, generalized UPO security. In contrast, for convenience of presentation,
we adopt the reverse order: we first define generalized UPO security and then present UPO security as a special case.

22

• If coin = 1, C̃ ← Obf (1λ, C∗[xB , xC , µB(xB), µC (xC)]).

The challenger sends C̃ to A .

3. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

4. The challenger sends xB and xC to B and C , respectively.

5. B and C respectively output coin′B and coin′C . The challenger outputs 1 if coin′B = coin′C = coin otherwise
outputs 0.

We say that UPO is original D-generalized UPO secure if for any QPT adversary Acp, it holds that

Pr
[
Expgen-upo

UPO,D,Acp
(λ) = 1

]
≤ 1

2
+ negl(λ).

Definition 3.12 (D-UPO Security [AB24]). D-UPO Security is defined similarly to D-generalized UPO Security
Definition 3.11 except that µB and µC are limited to be circuits that output ⊥ on all inputs.

Example 3.13 (Examples of distribution D). In this work, we mainly focus on the following two types of distributions:
product distributions and diagonal distributions.

• We say that a distribution D over {0, 1}ℓcin ×{0, 1}ℓcin is a product distribution if it can be written as D = DB ×DC
where DB and DC are distributions over {0, 1}ℓcin . As a special case of product distributions, we write U to mean
the uniform distribution over {0, 1}ℓcin × {0, 1}ℓcin .

• We say that a distribution D over {0, 1}ℓcin × {0, 1}ℓcin is a diagonal distribution if its support belongs to
{(x, x) : x ∈ {0, 1}ℓcin}. As a special case of diagonal distributions, we write IDU to mean the uniform diagonal
distribution that generates (x, x) for uniformly random x ← {0, 1}ℓcin .

In this paper, we introduce a new security notion of UPO which we call generalized UPO+security. . This extends
the generalized UPO security Definition 3.11 by adopting the “+”-style formulation introduced by [KY25b] in the
context of SDE.

Definition 3.14 (D-Generalized UPO+Security). Let UPO = (Obf , Eval) be a UPO scheme for the circuit class
Circ = {C : {0, 1}ℓcin → {0, 1}ℓcout}. Let D be a distribution over {0, 1}ℓcin × {0, 1}ℓcin . We consider the
D-UPO+anti-piracy game Expgen-upoplus

UPO,D,Acp
(λ) between the challenger and an adversary Acp = (A , B, C) below.

1. On input 1λ, A sends C ∈ Circ together with two circuits µB : {0, 1}ℓcin → {0, 1}ℓcout and µC : {0, 1}ℓcin →
{0, 1}ℓcout to the challenger.

2. The challenger generates coinB ← {0, 1}, coinC ← {0, 1}, and (xB , xC)← D, and sets as follows:

yB,0 := C(xB), yB,1 := µB(xB), yC ,0 := C(xC), yC ,1 := µC (xC).

The challenger generates ρC ← Obf (1λ, C∗[xB , xC , yB,coinB , yC ,coinC]) and sends ρC to A .

3. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

4. The challenger sends xB and xC to B and C , respectively.

5. B and C respectively output coin′B and coin′C . The challenger outputs 1 if coin′B ⊕ coin′C = coinB ⊕ coinC
otherwise outputs 0.

We say that UPO is D-UPO+secure if for any QPT adversary Acp, it holds that

Pr
[
Expgen-upoplus

UPO,D,Acp
(λ) = 1

]
≤ 1

2
+ negl(λ).

23

In some applications, we assume that UPO also satisfies security as indistinguishability obfuscation (iO). For clarity,
we define what it means for a UPO to satisfy iO security. Note that iO security can be generically added by first applying
iO, followed by UPO.

Definition 3.15 (iO Security). We say that a UPO scheme UPO = (Obf , Eval) satisfies iO security if for any PPT
Sampler and QPT adversary A , the following holds:

If Pr
[
∀x C0(x) = C1(x) ∧ |C0| = |C1| | (C0, C1, aux)← Sampler(1λ)

]
= 1− negl(λ), then we have

Advio
iO,D(λ) :=

∣∣∣Pr
[

A(Obf (1λ, C0), aux) = 1 | (C0, C1, aux)← Sampler(1λ)
]

−Pr
[

A(Obf (1λ, C1), aux) = 1 | (C0, C1, aux)← Sampler(1λ)
]∣∣∣ ≤ negl(λ).

The following lemma is easy to prove along the lines of the composition theorem proven in [AB24, Theorem 12].

Lemma 3.16. Let Circ = {C : {0, 1}ℓcin → {0, 1}ℓcout} be a circuit class and D be a distribution over {0, 1}ℓcin ×
{0, 1}ℓcin . For any X ∈ {D-UPO,D-generalized UPO, D-generalized UPO+}, if there exist a secure iO scheme and a
UPO scheme for the circuit class Circ that satisfies X security, there exists a UPO scheme for the circuit class Circ that
satisfies both iO security and X security.

The above lemma allows us to assume, without loss of generality, that UPO (under any flavor of security) satisfies
iO security , provided that iO exists.

We show that for any product distribution D = DB ×DC , D-generalized UPO+security implies D-generalized UPO
security, assuming that the UPO satisfies iO security and there exist keyed injective DB - and DC -one-way functions.

Theorem 3.17. Let UPO = (Obf , Eval) be a UPO scheme for the circuit class Circ = {C : {0, 1}ℓcin → {0, 1}ℓcout}.
Let D = DB × DC be a product of two distributions DB and DC over {0, 1}ℓcin . If UPO satisfies D-generalized
UPO+security and iO-security, and there exist keyed injective DB - and DC one-way functions, then UPO also satisfies
D-generalized UPO security.

Proof of Theorem 3.17. We note that the proof is similar to the implication from CPA+anti-piracy to Diden-bit,ind-msg-
CPA anti-piracy for SDE given in [KY25b, Theorem 6.20].

Let Acp = (A , B, C) be any adversary for D-generalized UPO security of UPO. Consider the following hybrid
experiments.

Hyb0: This is Expgen-upo
UPO,D,Acp

(λ).

We have
Pr[Hyb0 = 1] = Pr

[
Expgen-upo

UPO,D,Acp
(λ) = 1

]
.

Hyb1: Same as Hyb0 except that if coin = 0, C̃ is generated as C̃ ← Obf (1λ, C∗[xB , xC , C(xB), C(xC)]).

From the iO security of UPO, we have

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ).

We below prove that

Pr[Hyb1 = 1] ≤ Pr
[
Expgen-upoplus

UPO,D,Acp
(λ) = 1

]
+ negl(λ).

In an execution of Expgen-upoplus
UPO,D,Acp

(λ), let coinB and coinC be the challenge bits chosen by the challenger for B and C
and coin′B and coin′C be the outputs of B and C , respectively. Let EB be the event that coin′B = coinB , EC be the event
that coin′C = coinC , and Eiden-bit be the event that coinB = coinC . Clearly, we have

Pr
[
Expgen-upoplus

UPO,D,Acp
(λ) = 1

]
= Pr[EB ∧ EC] + Pr[¬EB ∧ ¬EC]

and
Pr[Hyb1 = 1] = Pr[EB ∧ EC | Eiden-bit].

Here, we prove the following claim:

24

Claim 3.18. It holds that
Pr[EB | Eiden-bit] ≈negl(λ) Pr[EB | ¬Eiden-bit].

and
Pr[EC | Eiden-bit] ≈negl(λ) Pr[EC | ¬Eiden-bit].

We first finish the proof of Theorem 3.17 assuming Claim 3.18. It is clear that we have Pr[Eiden-bit] = 1/2. Thus,
by Lemma 2.9, we have

Pr[EB ∧ EC] + Pr[¬EB ∧ ¬EC]

≈negl(λ) Pr[EB ∧ EC | Eiden-bit] + Pr[¬EB ∧ ¬EC | ¬Eiden-bit] ≥ Pr[EB ∧ EC | Eiden-bit].

This implies
Pr
[
Expgen-upoplus

UPO,D,Acp
(λ) = 1

]
+ negl(λ) ≥ Pr[Hyb1 = 1].

Thus, we have
Pr
[
Expgen-upo

UPO,Acp
(λ) = 1

]
≤ Pr

[
Expgen-upoplus

UPO,D,Acp
(λ) = 1

]
+ negl(λ).

Since we assume that UPO satisfies D-generalized UPO+security, Pr
[
Expgen-upoplus

UPO,D,Acp
(λ) = 1

]
= negl(λ). Thus,

Pr
[
Expgen-upo

UPO,Acp
(λ) = 1

]
= negl(λ). This completes the proof of Theorem 3.17.

We are left to prove Claim 3.18.

Proof of Claim 3.18. We only show the proof for the first equality since the other can be proven similarly.
Let Gen be a generator for keyed injective DC -one-way function. We consider the following sequence of hybrids:

Hyb0: This hybrid works similarly to Expgen-upoplus
UPO,D,Acp

(λ) conditioned on Eiden-bit, i.e., coinB = coinC , and outputs 1 if
coinB = coin′B .

By definition, we have
Pr[Hyb0 = 1] = Pr[EB | Eiden-bit].

Hyb1: This is identical to Hyb0 except that the challenger samples F← Gen(1λ), computes zC := F(xC), and generates
C̃ as follows:

C̃ ←
{

Obf (1λ, C′0[xB , yB,coinB]) coinC = 0
Obf (1λ, C′1[xB , zC , yB,coinB , yC ,1]) coinC = 1

where

C′0[xB , yB,coinB](x) =

{
C(x), x ̸= xB

yB,coinB , x = xB

and14

C′1[xB , zC , yB,coinB , yC ,1](x) =


C(x), x ̸= xB ∧ F(x) ̸= zC

yB,coinB , x = xB

yC ,1, F(x) = zC

.

Since yC ,0 = C(xC), when coinC = 0, C′0[xB , yB,coinB] is functionally equivalent to C∗[xB , xC , yB,coinB , yC ,0]. Moreover,
by the injectivity of F, C′1[xB , zC , yB,coinB , yC ,1] is functionally equivalent to C∗[xB , xC , yB,coinB , yC ,1]with overwhelming
probability. Thus, by the iO security of UPO, we have

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).
14For completeness, we define C′1[xB , zC , yB,coinB , yC ,1](x) to be yB,coinB when x satisfies both x = xB and F(x) = zC , though this case can be

defined arbitrarily since we have F(xB) = zC only with a negligible probability.

25

Hyb2: This is identical to Hyb1 except that C̃ is generated as

C̃ ← Obf (1λ, C′0[xB , yB,coinB])

regardless of the value of coinC .

When coinC = 0, nothing is changed. When coinC = 1, by the injectivity of F, C′0[xB , yB,coinB] and
C′1[xB , zC , yB,coinB , yC ,1] differ only on a single point xC with overwhelming probability. Moreover, given descriptions
of these two circuits, it is computationally infeasible to find xC by the DC -one-wayness of F. Since the iO security
implies differing-input obfuscation security in the single-differing input setting [BCP14], we have

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Hyb3: This is identical to Hyb2 except that we choose coinB and coinC conditioned on coinB ̸= coinC instead of on
coinB = coinC .

Note that the marginal distribution of coinB is uniform in both Hyb2 and Hyb3 and no information of coinC is given to
B. Thus, the above modification does not change the view of B, and thus we have

Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Hyb4: This hybrid works similarly to Expgen-upoplus
UPO,D,Acp

(λ) conditioned on ¬Eiden-bit, i.e., coinB ̸= coinC , and outputs 1
if coinB = coin′B .

By repeating similar arguments to those from Hyb0 to Hyb2 in the reversed order, we have

|Pr[Hyb3 = 1]− Pr[Hyb4 = 1]| ≤ negl(λ).

Also, we clearly have
Pr[Hyb4 = 1] = Pr[EB | ¬Eiden-bit].

Combining the above, we conclude

Pr[EB | Eiden-bit] ≈negl(λ) Pr[EB | ¬Eiden-bit].

4 Strong Monogamy Property of Coset States with Auxiliary Inputs
In this section, we introduce a new variant of the strong monogamy property of coset states that considers certain
auxiliary inputs, and prove it.

Notations. For a subspace A ⊆ Fn
2 , we use the following notations introduced by [CLLZ21, AKL+22].

• A⊥ := {b ∈ Fn
2 : ∀a ∈ A, ⟨a, b⟩ = 0}.

• CanA is a function such that for any s ∈ Fn
2 , CanA(s) is the lexicographically smallest vector contained in A + s,

which we call the canonical representative of coset A + s. For any s′ ∈ A + s, we have CanA(s′) = CanA(s).
CanA is polynomial-time computable given the description of A.

• CS(A) = {CanA(s) : s ∈ Fn
2}.

26

For a subspace A ⊆ Fn
2 and (s, t) ∈ Fn

2 ×Fn
2 , we define the coset state |As,t⟩ as

|As,t⟩ :=
1√
|A| ∑

a∈A
(−1)⟨a,t⟩ |a + s⟩ .

By applying H⊗n to |As,t⟩, we obtain
∣∣A⊥t,s〉, where H is the Hadamard gate (thus H⊗n is the Quantum Fourier

Transformation over Fn
2 .)

When the context is clear, we often abuse notation by writing A to refer to its description, represented as a tuple of
basis vectors. We often write iO(A + s) to denote an obfuscation by iO of the program that verifies membership in
A + s.

We remark the following easy lemma, which is obvious from the definitions.

Lemma 4.1. For a subspace A ⊆ Fn
2 , s ∈ CS(A), and s′ ∈ Fn

2 , the following two conditions are equivalent:

1. s = s′

2. s′ ∈ A + s and CanA(s′) = s′.

Strong monogamy property. An information-theoretic property known as the strong monogamy property of coset
states (Theorem 4.4) was conjectured by Coladangelo et al.[CLLZ21] and later proven by Culf and Vidick[CV22].
Coladangelo et al. [CLLZ21] also extended this property to a computational version using iO. In this paper, we introduce
a further variant of the property that considers an indistinguishability game instead of a search game, and, more
importantly, allows the adversary to receive certain auxiliary inputs.15 The formal statement is given below:

Theorem 4.2 (Computational Strong Indistinguishability Monogamy Property of Coset States with Simulatable
Auxiliary Inputs). Let iO be iO. Let n ∈ N be a polynomial in λ. Let Aux = (AuxSetup, AuxGenB , AuxGenC) be a
tuple of QPT algorithms with the following syntax.

AuxSetup(1λ): This algorithm takes a security parameter 1λ, and outputs a classical public parameter pp.

AuxGenX (pp, A, rX) where X ∈ {B, C}: This algorithm takes a public parameter pp, a description of a subspace
A ⊆ Fn

2 , and rX ∈ {0, 1}n, and outputs a pair of classical strings (z1,X , z2,X).

We assume that, the first coordinate of the output of AuxGenX (pp, A, rX) can be statistically simulated from pp alone,
without using (A, rX). That is, for X ∈ {B, C}, there exists a (not necessarily polynomial-time) quantum algorithm SimX
such that for any subspace A ⊆ Fn

2 and any rX ∈ {0, 1}n, the following distributions are statistically indistinguishable:{
(pp, z1,X) : pp← AuxSetup(1λ)

(z1,X , z2,X)← AuxGenX (pp, A, rX)

}
≈
{
(pp, z1,X) : pp← AuxSetup(1λ)

z1,X ← SimX (pp)

}
.

Consider the following experiment Expcomp-strong-ind-moe-aux
iO,Aux ,Amoe

(λ) between a challenger and an adversary Amoe =

(A , B, C).

1. The challenger picks a uniformly random subspace A ⊆ Fn
2 of dimension n/2, and two uniformly random

canonical representatives (s, t) ∈ CS(A)× CS(A⊥). The challenger picks rB , rC ← {0, 1}n, and generates
pp ← AuxSetup(1λ), (z1,B , z2,B) ← AuxGenB(pp, A, rB), and (z1,C , z2,C) ← AuxGenC (pp, A, rC). It sends
|As,t⟩, iO(A + s), iO(A⊥ + t), pp, z1,B , and z1,C to A .

2. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

3. The challenger sends (A, rB , z2,B) to B and (A, rC , z2,C) to C .

4. B and C respectively output bB and bC . The challenger outputs 1 if bB ⊕ bC = ⟨rB , s⟩ ⊕ ⟨rC , t⟩ and outputs 0
otherwise.

15An indistinguishability version without auxiliary inputs was already introduced in [KY25b].

27

Assuming iO is a secure iO and there exist OWFs, for any QPT adversary Amoe = (A , B, C), it holds that

Pr
[
Expcomp-strong-ind-moe-aux

iO,Aux ,Amoe
(λ) = 1

]
≤ 1

2
+ negl(λ).

Remark 4.3. We do not need to explicitly provide (A, rB) to B and (A, rC) to C , as these can be included in z2,B and
z2,C without loss of generality. However, we present them explicitly here for clarity.

We prove Theorem 4.2 in Section 4.1.

4.1 Proof of Theorem 4.2
In this subsection, we prove Theorem 4.2. Our proof builds on the strong monogamy property of coset states [CLLZ21,
CV22], which we gradually extend to eventually establish the desired result.

We begin by recalling the strong monogamy property of coset states.

Theorem 4.4 (Strong Monogamy Property of Coset States [CLLZ21, CV22]). Let n ∈ N be a polynomial in λ.
Consider the following experiment Expstrong-moe

Amoe
(λ) between a challenger and an adversary Amoe = (A , B, C).

1. The challenger picks a uniformly random subspace A ⊆ Fn
2 of dimension n/2, and vectors (s, t)← Fn

2 ×Fn
2 . It

sends |As,t⟩ to A .

2. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

3. The challenger sends A to both B and C .

4. B and C respectively output sB and tC . The challenger outputs 1 if sB ∈ (A + s) and tC ∈ (A⊥ + t), and outputs
0 otherwise

For any (not necessarily polynomial-time) quantum adversary Amoe = (A , B, C), it holds that

Pr
[
Expstrong-moe

Amoe
(λ) = 1

]
≤ negl(λ).

Remark 4.5. In Theorem 4.4, the pair (s, t) is sampled uniformly from the entire space Fn
2 × Fn

2 , rather than from
CS(A)× CS(A⊥) as in Theorem 4.2. Although both versions are equivalent at this point, this choice is motivated
by the fact that the proof of the extended version of the property, presented in Corollary 4.6, appears to rely on (s, t)
being uniformly distributed over Fn

2 ×Fn
2 . The discrepancy in the distribution of (s, t) is resolved later in the proof,

specifically during the game hops from Hyb0 to Hyb2 in the proof of Theorem 4.2, given at the end of this subsection.

[CLLZ21] showed that Theorem 4.4 implies the following corollary, which we refer to as the extended strong
monogamy property of coset states. In this variant, the adversary A additionally receives the descriptions of a uniformly
random subspace B ⊆ Fn

2 of dimension 3n/4 that contains A, and a uniformly random subspace C ⊆ A of dimension
n/4, along with the vectors s + v and t + w, where v ← B and w ← C⊥. The differences from Theorem 4.4 are
highlighted in bold red text.

Corollary 4.6 (Extended Strong Monogamy Property of Coset States [CLLZ21]16). Let n ∈N be a polynomial in
λ. Consider the following experiment Expex-strong-moe

Amoe (λ) between a challenger and an adversary Amoe = (A , B, C).

1. The challenger picks a uniformly random subspace A ⊆ Fn
2 of dimension n/2, a uniformly random subspace

B of dimension 3n/4 that contains A, and a uniformly random subspace C ⊆ A of dimension n/4. The
challenger picks vectors (s, t)← Fn

2 ×Fn
2 and (v, w)← B× C⊥.

It sends |As,t⟩, the descriptions of B and C, and vectors s + v and t + w to A .
16The reduction from Corollary 4.6 to Theorem 4.4 is provided in Lemma C.16 of the arXiv version of [CLLZ21]: https://arxiv.org/pdf/

2107.05692.

28

https://arxiv.org/pdf/2107.05692
https://arxiv.org/pdf/2107.05692

2. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

3. The challenger sends A to both B and C .

4. B and C respectively output sB and tC . The challenger outputs 1 if sB ∈ (A + s) and tC ∈ (A⊥ + t), and outputs
0 otherwise

For any (not necessarily polynomial-time) quantum adversary Amoe = (A , B, C), it holds that

Pr
[
Expex-strong-moe

Amoe
(λ) = 1

]
≤ negl(λ).

In Corollary 4.6, note that the statement remains equivalent even if the goals of B and C are modified to output
CanA(s) and CanA⊥(t), respectively.17 With this observation, the following corollary follows immediately by applying
the simultaneous quantum Goldreich-Levin lemma (Lemma 2.8) to Corollary 4.6. The differences from Corollary 4.6
are highlighted in bold red text.

Corollary 4.7 (Extended Strong Indistinguishability Monogamy Property of Coset States). Let n ∈ N be a
polynomial in λ. Consider the following experiment Expex-strong-ind-moe

Amoe
(λ) between a challenger and an adversary

Amoe = (A , B, C).

1. The challenger picks a uniformly random subspace A ⊆ Fn
2 of dimension n/2, a uniformly random subspace B

of dimension 3n/4 that contains A, and a uniformly random subspace C ⊆ A of dimension n/4. The challenger
picks vectors (s, t) ∈ Fn

2 ×Fn
2 and (v, w)← B× C⊥.

It sends |As,t⟩, the descriptions of B and C, and vectors s + v and t + w to A .

2. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

3. The challenger chooses rB , rC ← {0, 1}n. The challenger sends (A, rB) to B, and (A, rC) to C .

4. B and C respectively output bB and bC . The challenger outputs 1 if bB ⊕ bC = ⟨rB , CanA(s)⟩ ⊕ ⟨rC , CanA⊥(t)⟩
and outputs 0 otherwise.

For any (not necessarily polynomial-time) quantum adversary Amoe = (A , B, C), it holds that

Pr
[
Expex-strong-ind-moe

Amoe
(λ) = 1

]
≤ 1

2
+ negl(λ).

Next, we consider a variant of the above property in which A , B, and C receive auxiliary inputs as in Theorem 4.2,
but do not receive the obfuscated programs. The differences from Corollary 4.7 are highlighted in bold red text.

Corollary 4.8 (Extended Strong Indistinguishability Monogamy Property of Coset States with Simulatable
Auxiliary Inputs). Let n ∈N be a polynomial in λ. Let Aux = (AuxSetup, AuxGenB , AuxGenC) and (SimB , SimC) be
(not necessarily polynomial-time) quantum algorithms satisfying the conditions in Theorem 4.2. Consider the
following experiment Expex-strong-ind-moe-aux

Aux ,Amoe (λ) between a challenger and an adversary Amoe = (A , B, C).

1. The challenger picks a uniformly random subspace A ⊆ Fn
2 of dimension n/2, a uniformly random subspace B

of dimension 3n/4 that contains A, and a uniformly random subspace C ⊆ A of dimension n/4. The challenger
picks vectors (s, t) ∈ Fn

2 ×Fn
2 and (v, w)← B× C⊥. The challenger picks rB , rC ← {0, 1}n, and generates

pp← AuxSetup(1λ), (z1,B , z2,B)← AuxGenB(pp, A, rB), and (z1,C , z2,C)← AuxGenC (pp, A, rC).
It sends |As,t⟩, the descriptions of B and C, vectors s + v and t + w, pp, z1,B , and z1,C to A .

2. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .

3. The challenger sends (A, rB , z2,B) to B, and (A, rC , z2,C) to C .
17This is because, given the description of A, one can efficiently compute CanA(sB) = CanA(s) and CanA⊥ (tC) = CanA⊥ (t) from sB ∈ (A+ s)

and tC ∈ (A⊥ + t), respectively.

29

4. B and C respectively output bB and bC . The challenger outputs 1 if bB ⊕ bC = ⟨rB , CanA(s)⟩ ⊕ ⟨rC , CanA⊥(t)⟩
and outputs 0 otherwise.

For any (not necessarily polynomial-time) quantum adversary Amoe = (A , B, C), it holds that

Pr
[
Expex-strong-ind-moe-aux

Aux ,Amoe
(λ) = 1

]
≤ 1

2
+ negl(λ).

Proof of Corollary 4.8. Let Amoe = (A , B, C) be a (not necessarily polynomial-time) quantum adversary as in
Corollary 4.8. Then we construct a (not necessarily polynomial-time) quantum adversary A ′moe = (A ′, B ′, C ′) as in
Corollary 4.7 as follows:

A ′: Upon receiving (|As,t⟩ , B, C, s + v, t + w), it generates pp ← AuxSetup(1λ), z1,B ← SimB(pp), and z1,C ←
SimC (pp). Then it runs A on input (|As,t⟩ , B, C, s + v, t + w, z1,B , z1,C) to obtain a bipartite state q over registers
RB and RC . It sends z1,B and q [RB] to B ′, and z1,C and q [RC] to C ′.

B ′: Upon receiving (z1,B , q [RB]) from A ′ and (A, rB) from the challenger, it samples (z1, z2)← AuxGenB(pp, A, rB)
conditioned on z1 = z1,B (using unbounded computational power), and sets z2,B = z2.18 Finally, it runs B on
input (q [RB], A, rB , z2,B) to obtain bB , and outputs bB .

C ′: Upon receiving (z1,C , q [RC]) from A ′ and (A, rC) from the challenger, it samples (z1, z2)← AuxGenC (pp, A, rC)
conditioned on z1 = z1,C (using unbounded computational power), and sets z2,C = z2.19 Finally, it runs C on
input (q [RC], A, rC , z2,C) to obtain bC , and outputs bC .

By the simulatability condition, for any A and r, with overwhelming probability over the choice of pp← AuxSetup(1λ),
SimX (pp) statistically simulates the first coordinate of AuxGenX (pp, A, rX) for X ∈ {B, C}. Therefore, the joint
distribution of (z1,B , z2,B , z1,C , z2,C) generated by A ′moe is statistically close to that in Expex-strong-ind-moe-aux

AuxGen ,Amoe
(λ). Apart

from this, A ′moe perfectly simulates the execution of Expex-strong-ind-moe-aux
AuxGen ,Amoe (λ) for Amoe. Therefore, the difference

between Pr
[
Expex-strong-ind-moe-aux

Aux ,Amoe
(λ) = 1

]
and Pr

[
Expex-strong-ind-moe

A ′moe
(λ) = 1

]
is negligible. Hence, Corollary 4.8

follows directly from Corollary 4.7.

We reduce Theorem 4.2 to Corollary 4.8 using a technique similar to that of [CLLZ21], which upgrades the strong
monogamy property of coset states (Theorem 4.4) to its computational analogue. This technique relies on a result
by Zhandry [Zha19], which shows that, assuming the existence of OWFs, any iO also serves as a subspace-hiding
obfuscator.

Below, we state the definition of a subspace-hiding obfuscator.

Definition 4.9 ([Zha19]). A subspace hiding obfuscator (shO) for a field F and dimensions d0, d1 is a PPT algorithm
shO satisfying the following:

Syntax. shO takes as input the description of a linear subspace S ⊆ Fn of dimension d ∈ {d0, d1} and outputs a
classical circuit Ŝ.

Correctness. For any linear subspace S ⊆ Fn of dimension d ∈ {d0, d1}, it holds that

Pr
[
∀x ∈ Fn, S(x) = Ŝ(x) : Ŝ← shO(S)

]
≥ 1− negl(λ)

where S(x) is the function that decides membership in S.

Security. Consider the following game between an adversary and a challenger, indexed by a bit b.

– The adversary submits to the challenger a subspace S0 of dimension d0

18If z1,B is not in the support of the first coordinate of the output of AuxGen(pp, A, rB), the algorithm simply aborts.
19If z1,C is not in the support of the first coordinate of the output of AuxGen(pp, A, rC), the algorithm simply aborts.

30

– The challenger chooses a random subspace S1 ⊆ Fn of dimension d1 such that S0 ⊆ S1. It then runs
Ŝ← shO(Sb), and gives Ŝ to the adversary

– The adversary makes a guess b′ for b.

For all QPT adversaries, it holds that |Pr[b′ = b]− 1/2| ≤ negl(λ) in the above game.

Lemma 4.10 ([Zha19]). If OWFs exist, then any iO, appropriately padded, is also a subspace hiding obfuscator for
field F and dimensions d0, d1, as long as |F|n−d1 is exponential.

Remark 4.11. The original statement in [Zha19] assumes the existence of injective OWFs, but it is easy to see that keyed
injective OWFs (Definition 2.5) suffice, which are known to exist if iO and OWFs exist [BPW16].

Then we prove Theorem 4.2.

Proof of Theorem 4.2. Let shO be a subspace hiding obfuscator for field F and dimensions d0 = n/2 and d1 = 3n/4.
Such a subspace hiding obfuscator exists assuming the existence of iO and OWFs by Lemma 4.10.

For a QPT adversary Amoe = (A , B, C), we consider the following sequence of hybrids.

Hyb0: This is the original security experiment Expcomp-strong-ind-moe-aux
iO,Aux ,Amoe

(λ) described in Theorem 4.2.

Hyb1: This is identical to Hyb0 except that the hybrid outputs 1 if bB ⊕ bC = ⟨rB , CanA(s)⟩ ⊕ ⟨rC , CanA⊥(t)⟩ and
outputs 0 otherwise.
Since s ∈ CS(A) and t ∈ CS(A⊥), we have CanA(s) = s and CanA′(t) = t. Thus, we clearly have

Pr[Hyb1 = 1] = Pr[Hyb0 = 1].

Hyb2: This is identical to Hyb1 except that s and t are sampled uniformly from Fn
2 instead of CS(A) and CS(A⊥).

Note that the only information of (s, t) given to the adversary is |As,t⟩, iO(A + s), and iO(A⊥ + t). For
any (s, t) ∈ Fn

2 × Fn
2 , |As,t⟩ =

∣∣∣ACanA(s),CanA⊥ (t)

〉
, and iO(A + s) and iO(A⊥ + t) are computationally

indistinguishable from iO(A + CanA(s)), and iO(A⊥ + CanA⊥(t)), respectively, by the security of iO.
Moreover, we have CanA(s) = CanA(CanA(s)) and CanA⊥(t) = CanA⊥(CanA⊥(t)). This means that the
probability to output 1 only negligibly changes even if we modify Hyb2 by replacing s and t with CanA(s) and
CanA⊥(t), respectively. For uniformly random (s, t) ∈ Fn

2 × Fn
2 , (CanA(s), CanA⊥(t)) is uniformly random

over CS(A)× CS(A⊥). Thus the game obtained by replacing s and t in Hyb2 with CanA(s) and CanA⊥(t) is
identical to Hyb1. Thus, we have

|Pr[Hyb2 = 1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Hyb3: This is identical to Hyb2 except that the first obfuscated program iO(A + s) given to A is replaced with
iO(shO(A)(· − s)) where shO(A)(· − s) is a program that takes x ∈ Fn as input and outputs shO(A)(x− s).
By the correctness of shO, shO(A)(· − s) is functionally equivalent to the membership testing program of A + s
with an overwhelming probability. Thus, by the security of iO, we have

|Pr[Hyb3 = 1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Hyb4: This is identical to Hyb3 except that the first obfuscated program iO(shO(A)(· − s)) given to A is replaced
with iO(shO(B)(· − s)) where B ⊆ Fn

2 is a uniformly random subspace of dimension 3n/4 that contains A.
By the security of shO, we have

|Pr[Hyb4 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

31

Hyb5: This is identical to Hyb4 except that the first obfuscated program iO(shO(B)(· − s)) given to A is replaced
with iO(shO(B)(· − (s + v))) for a uniformly random element v ∈ B.
By the correctness of shO, shO(B)(· − s) and shO(B)(· − (s + v)) are functionally equivalent with an
overwhelming probability. Thus, by the security of iO, we have

|Pr[Hyb5 = 1]− Pr[Hyb4 = 1]| ≤ negl(λ).

Hyb6: This is identical to Hyb5 except that the second obfuscated program iO(A⊥ + t) given to A is replaced with
iO(shO(C⊥)(· − (t + w))) where C is a uniformly random subspace of A of dimension n/4 and w ∈ C⊥ is a
uniformly random element of C⊥.
By a similar argument to the hops from Hyb2 to Hyb5, we have

|Pr[Hyb6 = 1]− Pr[Hyb5 = 1]| ≤ negl(λ).

One can see that Hyb6 is identical to Expex-strong-ind-moe-aux
Aux ,Amoe (λ) except that A is given iO(shO(B)(· − (s +

v))) and iO(shO(C⊥)(· − (t + w))) instead of (B, C, s + v, t + w). Since iO(shO(B)(· − (s + v))) and
iO(shO(C⊥)(· − (t + w))) can be efficiently generated from (B, C, s + v, t + w), a straightforward reduction
to Corollary 4.8 gives us the following:

Pr[Hyb6 = 1] ≤ 1/2 + negl(λ).

Combining the above, we can conclude that for any QPT adversary Amoe,

Pr[Hyb0 = 1] ≤ 1/2 + negl(λ),

completing the proof of Theorem 4.2.

5 Construction of UPO
We prove the following theorem.

Theorem 5.1. Assuming the existence of polynomially secure iO and the LWE assumption, for any constant c > 0
and any polynomials ℓinp and ℓout, there exists a UPO for the circuit class Circ = {C : {0, 1}ℓinp → {0, 1}ℓout} that
satisfies D-generalized UPO+security and D-generalized UPO security for any QPT-samplable product distributions
D = DB ×DC , where DB and DC have min-entropy at least λc.

Moreover, if DB and DC are uniformly random, the existence of OWFs (in place of the LWE assumption) together
with iO suffices.

5.1 Construction
Let n, ℓinp, and ℓout be polynomials in the security parameter λ.

We use the following building blocks.

• iO for polynomial size classical circuits iO.

• PPRF PPRF = (F, Puncture) with the domain {0, 1}ℓinp and the range {0, 1}ℓout .

We remark that additional cryptographic primitives are used in the security proof, as described in the relevant subsections.
We below construct a UPO scheme UPO = UPO.(Obf , Eval) for the circuit class Circ = {C : {0, 1}ℓinp →

{0, 1}ℓout}.

UPO.Obf (1λ, C):

32

P1[Cmc, C, K](a, x)

Hardwired constant: A description of a boolean circuits Cmc and C, and a string K.
Input: (a, x).

1. If Cmc(a) = 0, output ⊥. Otherwise, go to the next step.

2. Output FK(x)⊕ C(x).

Figure 5: The description of the circuit P1.

P2[C⊥mc, K](a, x)

Hardwired constant: A description of a boolean circuits C⊥mc and a string K.
Input: (a, x).

1. If C⊥mc(a) = 0, output ⊥. Otherwise, go to the next step.

2. Output FK(x).

Figure 6: The description of the circuit P2.

• Generate a uniformly random subspace A ⊆ Fn
2 of dimension n

2 , and two uniformly random elements
(s, t) ∈ CS(A)× CS(A⊥), where n is specified later.

• Define circuits Cmc := iO(A + s) and C⊥mc := iO(A⊥ + t).
• Generate a key K ← {0, 1}λ for PPRF.
• Generate two obfuscated circuits P̃1 ← iO(P1[Cmc, C, K]) and P̃2 ← iO(P2[C⊥mc, K]), where P1 and P2

are the circuits described in Figure 5 and Figure 6.
• Output C̃ := (|As,t⟩ , P̃1, P̃2).

UPO.Eval (C̃ , x):

• Parse C̃ = (ρ, P̃1, P̃2), where ρ is a quantum state, and P̃1 and P̃2 are interpreted as descriptions of circuits.
• Let E1 and E2 be unitaries that respectively work as follows:

|z1⟩ |z2⟩ 7→ |z1⟩
∣∣∣z2 ⊕ P̃1(z1, x)

〉
and |z1⟩ |z2⟩ 7→ |z1⟩

∣∣∣z2 ⊕ P̃2(z1, x)
〉

for any z1 ∈ {0, 1}n and z2 ∈ {0, 1}ℓout .

• Apply E1 to ρ⊗
∣∣∣0ℓout

〉
and measure the second register to obtain an outcome y1. Then, trace out the

second register and obtain the state ρ′.

• Apply E2 to H⊗nρ′ ⊗
∣∣∣0ℓout

〉
and measure the second register to obtain an outcome y2.

• Output Y := y1 ⊕ y2.

Perfect correctness. We prove

Pr
[
UPO.Eval (C̃ , x) = C(x)

∣∣ C̃ ← UPO.Obf (1λ, C)
]
= 1

for any C ∈ Circ and x ∈ {0, 1}ℓinp . Fix C ∈ Circ and x ∈ {0, 1}ℓinp . Suppose we generate C̃ := (|As,t⟩ , P̃, P̃2) as
prescribed in the description of UPO.Obf . Letting y1 and y2 be the values respectively computed in the third and forth
item of UPO.Eval (C̃ , x), we prove the followings.

33

• We prove that y1 = FK(x)⊕C(x) holds with probability 1. For any a ∈ A+ s, we have P̃1(a, x) = FK(x)⊕C(x)
from the correctness of iO. Thus, given that |As,t⟩ = 1√

|A| ∑a∈A(−1)⟨a,t⟩ |a + s⟩, if we apply the unitary E1

to |As,t⟩ ⊗
∣∣∣0ℓout

〉
, we obtain the state |As,t⟩ ⊗ |FK(x)⊕ C(x)⟩. This means y = FK(x)⊕ C(x) holds with

probability 1, and the state obtained by tracing out the second register after measuring y is |As,t⟩.

• We then prove y2 = FK(x). For any a ∈ A⊥ + t, we have P̃2(a, x) = FK(x) from the correctness of iO. Thus,
given that H⊗n |As,t⟩ = 1√

|A⊥ |
∑a∈A⊥(−1)⟨a,s⟩ |a + t⟩, if we apply the unitary E2 to H⊗n |As,t⟩ ⊗

∣∣∣0ℓout
〉

, we

obtain the state H⊗n |As,t⟩ ⊗ |FK(x)⟩. This means y2 = FK(x) holds.

The above shows the perfect correctness of UPO.

5.2 Proof of Security
In the security proof, we additionally use the following primitives, where ℓloss is a polynomial in λ and ℓA := n2/2 is
the number of bits needed to represent a subspace A ⊆ Fn

2 of dimension n/2.

• Universal hash function familyH : {0, 1}ℓinp → {0, 1}ℓA+n.

• Collection of (ℓinp, ℓloss)-lossy functions LF = (Geninj, Genloss).

We prove the following theorem.

Theorem 5.2. Let D be a distribution over {0, 1}ℓinp × {0, 1}ℓaux with conditional min-entropy at least ℓA + n +
(ℓinp− ℓloss) + ω(log λ). Then, assuming the existence of (ℓinp, ℓloss)-lossy functions LF, UPO satisfies D-generalized
UPO+security.

We may choose ℓA and n to be arbitrarily small polynomials. Assuming the LWE assumption, by Theorem 2.7,
we may also make (ℓinp − ℓloss) an arbitrarily small polynomial while allowing ℓinp and ℓout to be any polynomials.
Moreover, D-generalized UPO+security implies D-generalized UPO security without any additional assumption by
Theorem 3.17 since our construction clearly satisfies iO security and there exist keyed injective D-OWFs assuming the
LWE assumption. Therefore, the former part of Theorem 5.1 follows.

Proof of Theorem 5.2. Let Acp = (A , B, C) be a QPT adversary against D-generalized UPO+security of UPO. We
consider the following sequence of hybrids.

Hyb0: This is the original security experiment Expgen-upoplus
UPO,D,Acp

(λ) in Definition 3.14. More specifically, it works as
follows.

1. On input 1λ, A sends C ∈ Circ together with two circuits µB : {0, 1}ℓinp → {0, 1}ℓout and µC : {0, 1}ℓinp →
{0, 1}ℓout .

2. The challenger does the following.
• Choose coinB ← {0, 1}, generate xB ← DB(1λ), YB,0 ← C(xB), and YB,1 ← µB(xB).
• Choose coinC ← {0, 1}, generate xC ← DC (1λ), YC ,0 ← C(xC), and YC ,1 ← µC (xC).

The challenger generates C̃ := (|As,t⟩ , P̃1, P̃2)← UPO.Obf (1λ, C∗[xB , xC , YB,coinB , YC ,coinC]) and sends
C̃ to A .

3. A creates a bipartite state q over registers RB and RC . Then, A sends register RB to B and register RC to C .
4. The challenger sends xB and xC to B and C , respectively.
5. B and C respectively output coin′B and coin′C . The challenger outputs 1 if coin′B ⊕ coin′C = coinB ⊕ coinC

otherwise outputs 0.

34

P′1[Cmc, C, xB , xC , K{xB , xC }, wB , wC](a, x)

Hardwired constant: Descriptions of boolean circuits Cmc andC and string (xB , xC , K{xB , xC }, wB , wC), where K{xB , xC } describes
a key for PPRF punctured at {xB , xC }.

Input: (a, x).

1. If Cmc(a) = 0, output ⊥. Otherwise, go to the next step.

2. if x = xB , output the hardwired value wB . Otherwise, go to the next step.

3. if x = xC , output the hardwired value wC . Otherwise, go to the next step.

4. Output FK{xB ,xC }(x)⊕ C(x).

Figure 7: The description of the circuit P′1.

P′2[C
⊥
mc, xB , xC , K{xB , xC }, wB , wC](a, x)

Hardwired constant: A description of a boolean circuit C⊥mc and string (xB , xC , K{xB , xC }, wB , wC), where K{xB , xC } describes a
key for PPRF punctured at {xB , xC }.

Input: (a, x).

1. If C⊥mc(a) = 0, output ⊥. Otherwise, go to the next step.

2. if x = xB , output the hardwired value wB . Otherwise, go to the next step.

3. if x = xC , output the hardwired value wC . Otherwise, go to the next step.

4. Output FK{xB ,xC }(x).

Figure 8: The description of the circuit P′2.

By the definition, we clearly have

Pr[Hyb0 = 1] = Pr
[
Exptupoplus

UPO,D,Acp
(λ) = 1

]
.

We below use the circuits P′1 and P′2 respectively described in Figure 7 and Figure 8.

Hyb1: This is identical to Hyb0 except for the following changes, where K{xB , xC} ← Puncture(K, {xB , xC}),
yB ← FK(xB), and yC ← FK(xC).

• P̃1 is generated as P̃1 ← iO(P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB , yC ⊕YC ,coinC]).

• P̃2 is generated as P̃2 ← iO(P′2[C
⊥
mc, xB , xC , K{xB , xC}, yB , yC]).

From the security of iO, we have

|Pr[Hyb0 = 1]− Pr[Hyb1 = 1]| = negl(λ).

Hyb2: This is identical to Hyb1 except that yB and yC are generated as uniformly random strings instead of FK(xB) and
FK(xC), respectively. From the security of PPRF, we have

|Pr[Hyb1 = 1]− Pr[Hyb2 = 1]| = negl(λ).

Hereafter, we assume that xB ̸= xC , which holds with overwhelming probability.

Hyb3: This is identical to Hyb2 except that we replace yC with yC ⊕YC ,coinC . More specifically, the following changes
are applied.

35

• P̃1 is generated as P̃1 ← iO(P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB , yC]).

• P̃2 is generated as P̃2 ← iO(P′2[C
⊥
mc, xB , xC , K{xB , xC}, yB , yC ⊕YC ,coinC]).

Since yC is uniformly at random, so is yC ⊕YC ,coinC . Thus, we have

Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Hyb4: This is identical to Hyb3 except that coinB and coinC are replaced with coinB ⊕ ⟨rB , s⟩ and coinC ⊕ ⟨rC , t⟩,
respectively, where rB , rC ← {0, 1}n. More specifically, the following three changes are applied.

• P̃1 is generated as P̃1 ← iO(P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB⊕⟨rB ,s⟩, yC]).

• P̃2 is generated as P̃2 ← iO(P′2[C
⊥
mc, xB , xC , K{xB , xC}, yB , yC ⊕YC ,coinC⊕⟨rC ,t⟩]).

• The challenger outputs 1 if coin′B ⊕ coin′C = coinB ⊕ coinC ⊕ ⟨rB , s⟩ ⊕ ⟨rC , t⟩ and otherwise outputs 0.

Since (coinB , coinC) is distributed uniformly at random, so is (coinB ⊕ ⟨rB , s⟩, coinC ⊕ ⟨rC , t⟩). Thus, we have

Pr[Hyb3 = 1] = Pr[Hyb4 = 1].

We below use the circuits Q1 and Q2 respectively described in Figure 9 and Figure 10.

Hyb5: This is identical to Hyb4 except for the following changes, where h← H, Flf ← Geninj(1λ), ηB = Flf(xB), and
ηC = Flf(xC).

• P̃1 is generated as P̃1 ← iO(Q1[Cmc, C, µB , h, Flf , strB , ηB , ηC , K, yB , yC , coinB]), where strB = (A∥rB)⊕
h(xB).

• P̃2 is generated as P̃2 ← iO(Q2[C⊥mc, C, µC , h, Flf , strC , ηB , ηC , K, yB , yC , coinC]), where strC = (A⊥∥rC)⊕
h(xC).

We prove that
P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB⊕⟨rB ,s⟩, yC]

and
Q1[Cmc, C, µB , h, Flf , strB , ηB , ηC , K, yB , yC , coinB]

are functionally equivalent. For an input (a, x), we consider the following cases.

• The case where Cmc(a) = 0 (i.e., a /∈ A + s). In this case, both circuits output ⊥ according to the first
items of Figures 7 and 9, respectively.

• The case where Cmc(a) = 1 (i.e., a ∈ A+ s), and x = xB . In this case, P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕
YB,coinB⊕⟨rB ,s⟩, yC] clearly outputs the hardwired value yB ⊕ YB,coinB⊕⟨rB ,s⟩ according to the second
item of Figure 7. We show that Q1[Cmc, C, µB , h, Flf , strB , ηB , ηC , K, yB , yC , coinB] also outputs yB ⊕
YB,coinB⊕⟨rB ,s⟩ in this case. x = xB implies Flf(x) = ηB , and thus the computation goes to the second item
of Figure 9. Since x = xB , we have strB ⊕ h(x) = A∥rB . Since a ∈ A + s, we also have CanA(a) = s.
Thus, we can conclude that it outputs yB ⊕ YB,coinB⊕⟨rB ,s⟩, where we recall that YB,0 = C(xB) and
YB,1 = µB(xB).

• The case where Cmc(a) = 1 (i.e., a ∈ A + s), and x = xC . Since Flf is injective and we assume xB ̸= xC ,
the latter condition implies Flf(x) ̸= ηB and Flf(x) = ηC . Then, we can see that both circuits output yC in
this case according to the third items of Figures 7 and 9, respectively.

• The case where Cmc(x) = 1 (i.e., a ∈ A + s), and x /∈ {xB , xC}. Since Flf is injective, the latter condition
implies Flf(x) /∈ {ηB , ηC}. Then, we can see that both circuits output FK(x)⊕ C(x) according to the
fourth items of Figures 7 and 9, respectively.

36

Q1[Cmc, C, µB , h, Flf , strB , ηB , ηC , K, yB , yC , coinB](a, x)

Hardwired constant: Descriptions of boolean circuits (Cmc, C, µB), descriptions of functions (h, Flf), strings (strB , ηB , ηC , K, yB , yC),
and a bit coinB .

Input: (a, x).

1. If Cmc(a) = 0, output ⊥. Otherwise, go to the next step.

2. If Flf (x) = ηB , do the following.

• Compute S∥r ← strB ⊕ h(x).

• Output yB ⊕ C(x) if coinB ⊕ ⟨r, CanS(a)⟩ = 0 and yB ⊕ µB (x) if coinB ⊕ ⟨r, CanS(a)⟩ = 1.

Otherwise, go to the next step.

3. If Flf (x) = ηC , output the hardwired value yC . Otherwise, go to the next step.

4. Output FK(x)⊕ C(x).

Figure 9: The description of the circuit Q1.

Q2[C⊥mc, C, µC , h, Flf , strC , ηB , ηC , K, yB , yC , coinC](a, x)

Hardwired constant: Descriptions of boolean circuits (C⊥mc, C, µC), descriptions of functions (h, Flf), strings (strC , ηB , ηC , K, yB , yC),
and a bit coinC .

Input: (a, x).

1. If C⊥mc(a) = 0, output ⊥. Otherwise, go to the next step.

2. If Flf (x) = ηB , output the hardwired value yB . Otherwise, go to the next step.

3. If Flf (x) = ηC , do the following.

• Compute S∥r ← strB ⊕ h(x).

• Output yC ⊕ C(x) if coinC ⊕ ⟨r, CanS(a)⟩ = 0 and yC ⊕ µC (x) if coinC ⊕ ⟨r, CanS(a)⟩ = 1.

Otherwise, go to the next step.

4. Output FK(x).

Figure 10: The description of the circuit Q2.

This shows that the two circuits are functionally equivalent.
We can similarly prove that P′2[C

⊥
mc, xB , xC , K{xB , xC}, yB , yC ⊕YC ,coinC⊕⟨rC ,t⟩] and Q2[C⊥mc, C, µC , h, Flf , strC , ηB , ηC , K,

yB , yC , coinC] are functionally equivalent. Then, from the above discussion and the security of iO, we have

|Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| = negl(λ).

Hyb6: This is identical to Hyb5 except Flf is generated in lossy mode, that is, Flf ← Genloss(1λ). From the mode
indistinguishability of LF, we have

|Pr[Hyb5 = 1]− Pr[Hyb6 = 1]| = negl(λ).

We below show that
Pr[Hyb6 = 1] ≤ 1

2
+ negl(λ)

by a reduction to the computational strong indistinguishability monogamy property of coset states with simulatable
auxiliary input (Theorem 4.2) with respect to the following auxiliary input generator Aux = (AuxSetup, AuxGenB , AuxGenC)
and the corresponding simulator Sim = (SimB , SimC).

AuxSetup(1λ):

37

• Generate h← H and Flf ← Genloss(1λ).
• Output pp = (h, Flf).

AuxGenX (pp, A, rX) where X ∈ {B, C}:

• Parse pp = (h, Flf).
• Sample xX ← DX (1λ) and compute ηX := Flf(xX).
• Set

strX :=

{
(A∥rB)⊕ h(xB) if X = B
(A⊥∥rC)⊕ h(xC) if X = C

• Output z1,X := (ηX , strX) and z2,X := xX .

SimX (1λ) where X ∈ {B, C}:

• Generate ηX in the same way as in AuxGenX .
• Sample strX ← {0, 1}ℓA+n.
• Output z1,X := (ηX , strX).

First, we show that they satisfy the simulatability condition of Theorem 4.2.

Lemma 5.3. For X ∈ {B, C}, any subspace A ⊆ Fn
2 , and any rX ∈ {0, 1}n,{

(pp, z1,X) : pp← AuxSetup(1λ)
(z1,X , z2,X)← AuxGenX (pp, A, rX)

}
≈
{
(pp, z1,X) : pp← AuxSetup(1λ)

z1,X ← SimX (pp)

}
.

Proof of Lemma 5.3. In the execution of AuxGenX (pp, A, rX), note that ηX = Flf(xX) is the only variables that depend
on xX . By the assumption, xX has min-entropy at least ℓA + n + (ℓinp − ℓloss) + ω(log λ). Since the image size of Flf
is at most 2ℓinp−ℓloss , by the chain rule, xX has conditional min-entropy at least ℓA + n + ω(log λ) given ηX . Thus, by
the leftover hash lemma (Lemma 2.2), (h, Flf , ηX , h(xX)) ≈ (h, Flf , ηX , u′X) where u′X ← {0, 1}ℓk . This immediately
implies Lemma 5.3.

We now construct the following adversary Amoe = (Â , B̂, Ĉ) for the experiment in Theorem 4.2 using Acp =
(A , B, C).

1. Â is given |As,t⟩, Cmc = iO(A + s), C⊥mc = iO(A⊥ + t), pp = (h, Flf), z1,B = (ηB , strB), and z1,C =

(ηC , strC). Â invokes A with 1λ and obtains the circuits (C, µB , µC). Â generates ρC := (|As,t⟩ , P̃, P̃⊥) as in
Hyb6. Â can generate it with the given inputs, circuits (C, µB , µC) declared by A , and (K, coinB , yB , coinC , yC)
sampled by Â itself. Â then sends ρC to A .

2. When A outputs a bipartite state q over registers RB and RC , Â sends (coinB , q [RB]) to B and (coinC , q [RC]) to C .

3. B̂ and Ĉ are respectively given (A, rB , z2,B = xB) and (A, rC , z2,C = xC) and behave as follows.

• B̂ invokes B with q [RB] and xB , and obtains coin′B . B̂ outputs coin′B ⊕ coinB .
• Ĉ invokes C with q [RC] and xC , and obtains coin′C . Ĉ outputs coin′C ⊕ coinC .

Amoe perfectly simulates Hyb6 for Acp. If Acp wins the simulated experiment (i.e., Hyb6 outputs 1), we have
coin′B ⊕ coin′C = coinB ⊕ coinC ⊕ ⟨rB , s⟩ ⊕ ⟨rC , t⟩, that is, (coin′B ⊕ coinB)⊕ (coin′C ⊕ coinC) = ⟨rB , s⟩ ⊕ ⟨rC , t⟩.
Thus, by Theorem 4.2 and Lemma 5.3, we have

Pr[Hyb6 = 1] = Pr
[
Expcomp-strong-ind-moe-aux

iO,Aux ,Amoe
(λ) = 1

]
≤ 1

2
+ negl(λ).

Combining the above, we have

Pr
[
Exptupoplus

UPO,D,Acp
(λ) = 1

]
≤ 1

2
+ negl(λ).

This completes the proof of Theorem 5.2.

38

6 Alternative Proof of Security for Uniform Inputs
Here, we give an alternative security proof for the special case of the uniform input distribution. An advantage of this
alternative proof is that it does not rely on the additional assumption of lossy functions.

In the security proof, instead of universal hash functions and lossy functions, we rely on a new primitive which we
call key-robust non-committing encryption.

Definition 6.1 (Key-Robust Non-committing Encryption). A key-robust non-committing encryption scheme NCE with
the message spaceM is a tuple of five PPT algorithms (Gen, Enc, Dec, Fake, Open).

Gen(1λ): The key generation algorithm takes as input a security parameter 1λ and outputs a key k.

Enc(k, m)→ ct The encryption algorithm takes as input a key k and a message m ∈ M, and outputs a ciphertext ct.

Dec(k, ct)→ m′ The decryption algorithm is a deterministic algorithm that takes as input a key k and a ciphertext ct,
and outputs m′ ∈ M∪ {⊥}.

Fake(1λ)→ (ct∗, st) The fake algorithm takes as input a security parameter 1λ, and outputs a fake ciphertext ct∗ and
a state information st.

Open(st, m)→ k∗ The open algorithm takes as input a state information st and a message m ∈ M, and outputs a key
k∗.

We require it to satisfy the following three properties.

Correctness: With overwhelming probability over the choice of k← Gen(1λ), for any m ∈ M,

Pr[Dec(k, Enc(k, m)) = m] = 1.

Key-Robustness: With overwhelming probability over the choice of k← Gen(1λ), for any m ∈ M and any k′ ̸= k,

Pr
[
Dec(k′, Enc(k, m)) = ⊥

]
= 1.

Non-committing: For any message m ∈ M, we have

(ct, k)
c≈ (ct∗, k∗),

where k← Gen(1λ), ct← Enc(k, m), (ct∗, st)← Fake(1λ), and k∗ ← Open(st, ct∗).

We say that a key k is good if both Pr[Dec(k, Enc(k, m)) = m] = 1 and Pr[Dec(k′, Enc(k, m)) = ⊥] = 1 hold for all
m and k′ ̸= k. By the union bound, a key generated by Gen(1λ) is good with an overwhelming probability.

Theorem 6.2. Assuming the existence of keyed injective OWFs, for any polynomial ℓm, there exists a key-robust
non-committing encryption scheme with the message space {0, 1}ℓm , where the key length is linear in ℓm.

See Appendix A for the proof.
Note that keyed injective one-way functions exist assuming the existence of iO and one-way functions [BPW16],

thus a key-robust non-committing encryption scheme exists assuming he existence of iO and one-way functions.
We rely on the following primitive, where ℓk is a polynomial in λ and ℓA := n2/2 is the number of bits needed to

represent a subspace A ⊆ Fn
2 of dimension n/2.

• A key-robust non-committing encryption scheme NCE = (NCE.Enc, NCE.Dec, NCE.Fake, NCE.Open) with the
message space {0, 1}ℓA+n and the key space {0, 1}ℓk .

We prove the following theorem.

Theorem 6.3. Let U be the uniformly random distribution over {0, 1}ℓinp where ℓinp ≥ ℓk. Then, UPO satisfies
U-generalized UPO+security.

39

For any polynomial ℓinp, we may choose sufficiently small polynomial ℓk such that ℓinp ≥ ℓk. Also, we may choose
ℓout to be any polynomial. Moreover, U-generalized UPO+security implies U-generalized UPO security without any
additional assumption by Theorem 3.17 since our construction clearly satisfies iO security and there exist keyed injective
U-OWFs assuming the existence of iO and OWFs. Therefore, the latter part of Theorem 5.1 follows.

Proof of Theorem 6.3. For simplicity, we give the proof assuming ℓinp = ℓk while the extension to the general case is
straightforward.

Let Acp = (A , B, C) be a QPT adversary against D-generalized UPO+security of UPO. We consider the following
sequence of hybrids.

Hyb0-Hyb4: They are identical to those in the security proof in Section 5.2 except that xB and xC are chosen uniformly
randomly instead of from the distributions DB and DC , respectively.20

We below use the circuits Q′1 and Q′2 respectively described in Figure 11 and Figure 12.

Hyb5: This is identical to Hyb4 except for the following changes,where kB ← NCE.Gen(1λ), kC ← NCE.Gen(1λ),
ctB ← NCE.Enc(kB , A∥rB), and ctC ← NCE.Enc(kC , A∥rC).

• P̃1 is generated as P̃1 ← iO(Q′1[Cmc, C, µB , strB , strC , ctB , ctC , K, yB , yC , coinB]), where strB = kB ⊕ xB .

• P̃2 is generated as P̃2 ← iO(Q′2[C⊥mc, C, µC , strB , strC , ctB , ctC , K, yB , yC , coinC]), where strC = kC ⊕ xC .

Below, we assume that both kB and kC are good as per Definition 6.1, i.e., the perfect correctness and key-robustness
hold under those keys, since this holds with overwhelming probability.
We prove that

P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕YB,coinB⊕⟨rB ,s⟩, yC]

and
Q′1[Cmc, C, µB , strB , ctB , ctC , K, yB , yC , coinB]

are functionally equivalent. For an input (a, x), we consider the following cases.

• The case where Cmc(a) = 0 (i.e., a /∈ A + s). In this case, both circuits output ⊥ according to the first
items of Figures 7 and 11, respectively.

• The case where Cmc(a) = 1 (i.e., a ∈ A+ s), and x = xB . In this case, P′1[Cmc, C, xB , xC , K{xB , xC}, yB ⊕
YB,coinB⊕⟨rB ,s⟩, yC] clearly outputs the hardwired value yB ⊕YB,coinB⊕⟨rB ,s⟩ according to the second item
of Figure 7. We show that Q′1[Cmc, C, µB , strB , ctB , ctC , K, yB , yC , coinB] also outputs yB ⊕YB,coinB⊕⟨rB ,s⟩
in this case. x = xB implies k′B = strB ⊕ x = kB , and thus NCE.Dec(k′B , ctB) = A∥rB ̸= ⊥ by the
correctness of NCE. Therefore, the computation goes to the second item of Figure 11. Since a ∈ A + s, we
also have CanA(a) = s. Thus, we can conclude that it outputs yB ⊕ YB,coinB⊕⟨rB ,s⟩, where we recall that
YB,0 = C(xB) and YB,1 = µB(xB).

• The case where Cmc(a) = 1 (i.e., a ∈ A + s), and x = xC . Since we assume xB ̸= xC , we have
k′B = strB ⊕ x ̸= kB and k′C = strC ⊕ x = kC . Thus, by the key-robustness and correctness of NCE,
NCE.Dec(k′B , ctB) = ⊥ and NCE.Dec(k′C , ctC) = A∥rC ̸= ⊥. Then, we can see that both circuits output
yC in this case according to the third items of Figures 7 and 11, respectively.

• The case where Cmc(x) = 1 (i.e., a ∈ A + s), and x /∈ {xB , xC}. Then we have k′B = strB ⊕ x ̸= kB and
k′C = strC ⊕ x ̸= kC . By the key-robustness of NCE, NCE.Dec(k′B , ctB) = ⊥ and NCE.Dec(k′C , ctC) = ⊥.
Then, we can see that both circuits output FK(x)⊕ C(x) according to the fourth items of Figures 7 and 11,
respectively.

20Note that the universal hash functions and lossy functions are not used at or before Hyb4.

40

Q′1[Cmc, C, µB , strB , strC , ctB , ctC , K, yB , yC , coinB](a, x)

Hardwired constant: Descriptions of boolean circuits (Cmc, C, µB), strings (strB , strC , ctB , ctC , K, yB , yC), and a bit coinB .
Input: (a, x).

1. If Cmc(a) = 0, output ⊥. Otherwise, go to the next step.

2. If NCE.Dec(k′B , ctB) ̸= ⊥ where k′B ← strB ⊕ x, do the following.

• Compute S∥r ← NCE.Dec(k′B , ctB).

• Output yB ⊕ C(x) if coinB ⊕ ⟨r, CanS(a)⟩ = 0 and yB ⊕ µB (x) if coinB ⊕ ⟨r, CanS(a)⟩ = 1.

Otherwise, go to the next step.

3. If NCE.Dec(k′C , ctC) ̸= ⊥ where k′C ← strC ⊕ x, output the hardwired value yC . Otherwise, go to the next step.

4. Output FK(x)⊕ C(x).

Figure 11: The description of the circuit Q′1.

Q′2[C
⊥
mc, C, µC , strB , strC , ctB , ctC , K, yB , yC , coinC](a, x)

Hardwired constant: Descriptions of boolean circuits (C⊥mc, C, µC), strings (strB , strC , ctB , ctC , K, yB , yC), and a bit coinC .
Input: (a, x).

1. If C⊥mc(a) = 0, output ⊥. Otherwise, go to the next step.

2. If NCE.Dec(k′B , ctB) ̸= ⊥ where k′B ← strB ⊕ x, output the hardwired value yB . Otherwise, go to the next step.

3. If NCE.Dec(k′C , ctC) ̸= ⊥ where k′C ← strC ⊕ x, do the following.

• Compute S∥r ← NCE.Dec(k′C , ctC).

• Output yC ⊕ C(x) if coinC ⊕ ⟨r, CanS(a)⟩ = 0 and yC ⊕ µC (x) if coinC ⊕ ⟨r, CanS(a)⟩ = 1.

Otherwise, go to the next step.

4. Output FK(x).

Figure 12: The description of the circuit Q′2.

This shows that the two circuits are functionally equivalent.
We can similarly prove that P′2[C

⊥
mc, xB , xC , K{xB , xC}, yB , yC ⊕YC ,coinC⊕⟨rC ,t⟩] and Q′2[C

⊥
mc, C, µC , strB , strC , ctB ,

ctC , K, yB , yC , coinC] are functionally equivalent. Then, from the above discussion and the security of iO, we
have

|Pr[Hyb4 = 1]− Pr[Hyb5 = 1]| = negl(λ).

Hyb6: This is identical to Hyb5 except for the following changes.

• (ctB , kB) are generated as (ctB , stB)← NCE.Fake(1λ) and kB ← NCE.Open(stB , A∥rB).
• (ctC , kC) are generated as (ctC , stC)← NCE.Fake(1λ) and kC ← NCE.Open(stC , A⊥∥rC).

From the non-committing property of NCE, we have

|Pr[Hyb5 = 1]− Pr[Hyb6 = 1]| = negl(λ).

Hyb7: This is identical to Hyb6 except that strB and strC are chosen as uniformly random strings and then we set
xB := strB ⊕ kB and xC := strC ⊕ kC .
Since the challenge inputs xB , xC are uniformly random, the strings strB = kB ⊕ xB , strC = kC ⊕ xC are also
uniformly random. Thus, this hybrid is identical to the previous one from the view of the adversary, and thus,

Pr[Hyb6 = 1] = Pr[Hyb7 = 1]

41

We below show that
Pr[Hyb7 = 1] ≤ 1

2
+ negl(λ)

by a reduction to the computational strong indistinguishability monogamy property of coset states with no auxiliary
information, i.e., the special case of Theorem 4.2 where Aux = (AuxSetup, AuxGen) outputs nothing, and thus the
simulatability condition is trivially satisfied.21

We now construct the following adversary Amoe = (Â , B̂, Ĉ) for the experiment in Theorem 4.2 with no auxiliary
input using Acp = (A , B, C).

1. Â is given |As,t⟩, and Cmc = iO(A + s), C⊥mc = iO(A⊥ + t). Â invokes A with 1λ and obtains the circuits
(C, µB , µC). Â generates ρC := (|As,t⟩ , P̃, P̃⊥) as in Hyb7. Â can generate it with the given inputs, circuits
(C, µB , µC) declared by A , and (K, coinB , yB , strB , ctB , stB , coinC , yC , strC , ctC , stC) sampled by Â itself. Â then
sends ρC to A .

2. When A outputs a bipartite state q over registers RB and RC , Â sends (coinB , q [RB]) to B and (coinC , q [RC]) to C .

3. B̂ and Ĉ are respectively given (A, rB) and (A, rC) and behave as follows.

• B̂ computes kB ← NCE.Open(stB , A∥rB) and xB := strB ⊕ kB , invokes B with q [RB] and xB , and obtains
coin′B . B̂ outputs coin′B ⊕ coinB .

• Ĉ computes kC ← NCE.Open(stC , A⊥∥rC) and xC := strC ⊕ kC , invokes C with q [RC] and xC , and obtains
coin′C . Ĉ outputs coin′C ⊕ coinC .

Amoe perfectly simulates Hyb7 for Acp. If Acp wins the simulated experiment (i.e., Hyb7 outputs 1), we have
coin′B ⊕ coin′C = coinB ⊕ coinC ⊕ ⟨rB , s⟩ ⊕ ⟨rC , t⟩, that is, (coin′B ⊕ coinB)⊕ (coin′C ⊕ coinC) = ⟨rB , s⟩ ⊕ ⟨rC , t⟩.
Thus, by Theorem 4.2, we have

Pr[Hyb7 = 1] ≤ 1
2
+ negl(λ).

Combining the above, we have

Pr
[
Exptupoplus

UPO,U,Acp
(λ) = 1

]
≤ 1

2
+ negl(λ).

This completes the proof of Theorem 6.3.

7 Oracular Pseudorandomness-Style Copy-Protection
In this section, we show oracular pseudorandomness-style copy-protection for all puncturable secure circuit classes.

7.1 Puncturable Secure Circuits
We first generalized the existing definitions of (average-case) puncturable secure circuits [AB24, CG24b], in terms of
the number of points of puncture, and define puncturing security as follows:

Definition 7.1. For any ℓ := ℓ(λ) which is a polynomial function of λ, let Circ = {C : X → Y} be a circuit class,
where X = {0, 1}n, Y = {0, 1}m for polynomials m := m(λ), n := n(λ), equipped with an efficient deterministic
algorithm Puncture that satisfies puncturing correctness, i.e., Puncture(C, x) outputs a circuit that outputs C(x) if
and only if x ̸= x′. We say that (Circ, Puncture) satisfies ℓ-point m-bit (DX,DCirc)-unpredictability-style puncturing
security (generalized from [AB24]) if for every QPT adversary A , for every ℓ′ ≤ ℓ, the probability that A succeeds in

the following security game is at most 1−
(

1− 1
2m

)ℓ′
+ negl:

21For the special case of Theorem 4.2 with no auxiliary information, the proof given in Section 4.1 is redundant. Simply applying the simultaneous
quantum Goldreich-Levin lemma (Lemma 2.8) to the computational strong monogamy property of coset states [CLLZ21] suffices, as shown in
[KY25b].

42

• x1 ← DX, . . . , xℓ′ ← DX,

• C ← DCirc(1λ),

• Ĉ ← Puncture(C, (x1, . . . , xℓ′)),

• y′1, . . . , y′ℓ′ ← A(Ĉ, (x1, . . . , xℓ′)) and,

• A wins if there exists i ∈ [ℓ′] such that y′i = C(xi). 22

Moreover we say that the circuit class satisfies ℓ-point m-bit (DX,DCirc)-pseudorandomness-style puncturing
security (generalized from the decision puncturing notion in [CG24b]) if for every ℓ′ ≤ ℓ,

{Ĉ, (x1, . . . , xℓ′), (C(x1), . . . , C(xℓ′))}Ĉ←Puncture(C,(x1,...,xℓ′)),x1←DX,...,xℓ′←DX,C←DCirc(1λ)

≈c {Ĉ, (x1, . . . , xℓ′), (Y1, . . . , Yℓ′))}
Ĉ←Puncture(C,(x1,...,xℓ′)),x1←DX,...,xℓ′←DX,C←DCirc(1λ),Y1,...,Yℓ′

$←−Y
.

Next, we review the relationship between unpredictability-style and pseudorandomness-style puncturing security in
various parameter regimes.

Remark 7.2. Clearly, if a circuit class satisfies ℓ-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security
then it also satisfies 1-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security.23

Lemma 7.3. For any ℓ := ℓ(λ), m := m(λ) which are polynomials in the security parameter λ, if a circuit class
(Circ, Puncture) satisfies ℓ-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security then it also satisfies
ℓ-point m-bit (DX,DCirc)-unpredictability-style puncturing security. Moreover, if m = ℓ = 1, the converse is
also true, i.e., 1-point 1-bit (DX,DCirc)-pseudorandomness-style puncturing security is equivalent to 1-point 1-bit
(DX,DCirc)-unpredictability-style puncturing security.

Proof of Lemma 7.3. Let (Circ, Puncture) be a circuit class satisfying ℓ-point m-bit (DX,DCirc)-pseudorandomness-
style puncturing security. Let A be an adversary that wins the (DX,DCirc)-unpredictability-style puncture security
game with respect to some ℓ′ ≤ ℓ with probability p ≥

(
1− (1− 1/2m)ℓ

′)
. Hence the advantage of A , Adv(A) =

p−
(

1− (1− 1/2m)ℓ
′)

. Consider an adversary B in the (DX,DCirc)-pseudorandomness-style puncture security

game: B on input (Ĉ, (x1, . . . , xℓ′), (y1, . . . , yℓ′)), runs y′1, . . . , y′ℓ′ ← A(Ĉ, (x1, . . . , xℓ′)), and outputs 0 if there exists
i ∈ [ℓ′] such that y′i = yi, else outputs 1. Clearly, for any ℓ′ ≤ ℓ,

Pr
yi←C(xi)∀i∈[ℓ′],

Ĉ←Puncture(C,(x1,...,xℓ′)),
xi←DX∀i∈[ℓ′],C←DCirc(1λ)

[B(Ĉ, (x1, . . . , xℓ′), (y1, . . . , yℓ′)) = 1]

= 1− Pr
(y′1,...,y′

ℓ′)←A(Ĉ,(x1,...,xℓ′)),
yi←C(xi)∀i∈[ℓ′],

Ĉ←Puncture(C,(x1,...,xℓ′)),
xi←DX∀i∈[ℓ′],C←DCirc(1λ)

[∃i, y′i = yi] = 1− p.

22The definition in [AB24] was only defined for search function classes, i.e., with m ∈ ω(log(λ)), but we generalize their definition for function
classes with arbitrary output sizes

23By a proof similar to that of Theorem 8.17 that we are going to see next, we believe that the implication in the converse direction is also true
for the circuit class under a post-quantum iO iO, i.e., if iO(Circ) satisfies 1-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security,
then iO(Circ) should satisfy the ℓ-point m-bit (DX, D̃Circ)-pseudorandomness-style puncturing security where D̃Circ is the same distribution as in
Theorem 8.17. Hence, ℓ-point pseudorandomness-style puncturing security for any iO obfuscated circuit class should be morally equivalent to 1-point
security, for any polynomial ℓ.

43

Next,

Pr
yi

$←−Y∀i∈[ℓ′],
Ĉ←Puncture(C,(x1,...,xℓ′)),
xi←DX∀i∈[ℓ′],C←DCirc(1λ)

[B(Ĉ, (x1, . . . , xℓ′), (y1, . . . , yℓ′)) = 1]

= Pr
(y′1,...,y′

ℓ′)←A(Ĉ,(x1,...,xℓ′)),

yi
$←−Y∀i∈[ℓ′],

Ĉ←Puncture(C,(x1,...,xℓ′)),
xi←DX∀i∈[ℓ′],C←DCirc(1λ)

[y′i ̸= yi, ∀i ∈ [ℓ′]] =

(
1− 1

2m

)ℓ′

.

Hence, the distinguishing advantage of B is given by

Adv(B) =

∣∣∣∣∣∣∣∣∣∣∣
Pr

yi←C(xi)∀i∈[ℓ′],
Ĉ←Puncture(C,(x1,...,xℓ′)),
xi←DX∀i∈[ℓ′],C←DCirc(1λ)

[B(Ĉ, (x1, . . . , xℓ′), (y1, . . . , yℓ′)) = 1

− Pr
yi

$←−Y∀i∈[ℓ′],
Ĉ←Puncture(C,(x1,...,xℓ′)),
xi←DX∀i∈[ℓ′],C←DCirc(1λ)

[B(Ĉ, (x1, . . . , xℓ′), (y1, . . . , yℓ′)) = 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣1− p−
(

1− 1
2m

)ℓ′
∣∣∣∣∣ = p−

(
1−

(
1− 1

2m

)ℓ′
)

= Adv(A).

Since (Circ, Puncture) satisfies ℓ-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security, Adv(A) =
Adv(B) must be negligible, which completes the proof for the first part of the lemma.

Next for the “Moreover” part, let (Circ, Puncture) be a boolean output circuit class satisfying 1-point 1-bit
(DX,DCirc)-unpredictability-style puncturing security. It is enough to show that for every distinguisher B,

Adv(B) =

∣∣∣∣∣ Pr
y←C(x),Ĉ←Puncture(C,x),x←DX,C←DCirc(1λ)

[B(Ĉ, x, y) = 1]

− Pr
y

$←−Y,Ĉ←Puncture(C,x),x←DX,C←DCirc(1λ)

[B(Ĉ, x, y) = 1]

∣∣∣∣∣∣
is negligible.

For any bit b∗ ∈ {0, 1} let pb∗ := PrĈ←Puncture(C,x),C←DCirc(1λ)|C(x)=b∗ ,x←DX
[B(Ĉ, x, b∗) = 1], and let qb∗ :=

PrĈ←Puncture(C,x),C←DCirc(1λ)|C(x)=1−b∗ ,x←DX
[B(Ĉ, x, b∗) = 1], whereDCirc(1λ) |C(x)=b∗ is the conditional distribution

given by DCirc(1λ) conditioned on the event that the sampled circuit C has output value b∗ on x. Next for any bit
b∗ ∈ {0, 1} let zb∗ := PrĈ←Puncture(C,x),C←DCirc(1λ),x←DX

[C(x) = b∗]
Next, note that for any b∗ ∈ {0, 1}, if |pb∗ − qb∗ | is non-negligible, then WLOG, assume pb∗ ≥ qb∗ , then we can

violate 1-point (DX,DCirc)-unpredictability-style puncturing security, by considering the following adversary A , which
on input (Ĉ, x) runs d ← B(Ĉ, x, b∗) and outputs b∗ if d = 1 and 1− b∗ if d = 0. It is easy to see that the success

44

probability of A in the unpredictability puncture security game is precisely pb∗ − qb∗ . Hence ,we conclude by the
1-point (DX,DCirc)-unpredictability-style puncturing security of (Circ, Puncture) that

|pb∗ − qb∗ | ≤ neglb∗(λ), (2)

for some negligible function neglb∗(·). Similarly, if |zb∗ − 1/2| is non-negligible, then WLOG, assume zb∗ ≥ 1/2, then
we can violate 1-point (DX,DCirc)-unpredictability-style puncturing security, by considering the following adversary Ã ,
which on input (Ĉ, x) always outputs b∗. Clearly, the success probability of A in the unpredictability puncture security
game is precisely zb∗ − 1/2. Hence ,we conclude by the 1-point (DX,DCirc)-unpredictability-style puncturing security
of (Circ, Puncture) that

|zb∗ − 1/2| ≤ ñeglb∗(λ), (3)

for some negligible function ñeglb∗(·). Finally, note that by definition,

Pr
y←C(x),Ĉ←Puncture(C,x),x←DX,C←DCirc(1λ)

[B(Ĉ, x, y) = 1] = ∑
b∗∈{0,1}

zb∗ pb∗ ,

and

Pr
y

$←−Y,Ĉ←Puncture(C,x),x←DX,C←DCirc(1λ)

[B(Ĉ, x, y) = 1] = ∑
b∗∈{0,1}

zb∗
(pb∗ + q1−b∗)

2

= ∑
b∗∈{0,1}

pb∗zb∗ + qb∗z1−b∗

2
.

With this in mind, note that the advantage of B in the pseudorandomness-style puncture security game,

Adv(B)

=

∣∣∣∣∣∣∣∣ Pr
y←C(x),Ĉ←Puncture(C,x),

x←DX,C←DCirc(1λ)

[B(Ĉ, x, y) = 1]

− Pr
y

$←−Y,Ĉ←Puncture(C,x),
x←DX,C←DCirc(1λ)

[B(Ĉ, x, y) = 1]

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
b∗∈{0,1}

zb∗ pb∗ − ∑
b∗∈{0,1}

pb∗zb∗ + qb∗z1−b∗

2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∑
b∗∈{0,1}

pb∗

2
− ∑

b∗∈{0,1}

pb∗+qb∗
2
2

∣∣∣∣∣∣+ ∑
b∗∈{0,1}

∣∣∣∣ pb∗ − q1−b∗

2
ñeglb∗(λ)

∣∣∣∣
≤

∣∣∣∣∣∣ ∑
b∗∈{0,1}

pb∗

2
− ∑

b∗∈{0,1}

pb∗+qb∗
2
2

∣∣∣∣∣∣+ ϵ(λ) By (3)

=

∣∣∣∣∣∣ ∑
b∗∈{0,1}

pb∗ − qb∗

4

∣∣∣∣∣∣+ ϵ(λ)

≤ 1/4 ∑
b∗∈{0,1}

|pb∗ − qb∗ |+ ϵ(λ)

≤
∑b∗∈{0,1} neglb∗

4
+ ϵ(λ), By (2)

45

where ϵ(λ) :=
(

maxb∗ ñeglb∗(λ)
)

∑b∗∈{0,1}
|pb∗−q1−b∗ |

2 is a negligible function in λ and hence the last expression is
negligible in the security parameter λ.

7.2 Oracular Pseudorandomness-Style Copy-Protection for Pseudorandomness-Style Puncturable-
Secure Circuits

Theorem 7.4. Let DX be a high min-entropy distribution on the input space X and (Circ, Puncture) be a puncturable
circuit class satisfying 2-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security (see Definition 7.1).

Then any UPO scheme UPO = (Obf , Eval) satisfying (DX ×DX)-generalized UPO anti-piracy for Circ with
respect to Programcanonical , as well as iO security (see Definition 3.11 and Lemma 3.16), is also a (DCirc ×DX ×DX)-
oracular-pseudorandomness-style copy-protection scheme for Circ with CopyProtect = UPO.Obf and Eval = UPO.Eval
(see Definition 3.3).

Moreover, if the underlying UPO scheme UPO = (Obf , Eval) satisfies (DX ×DX)-generalized-UPO+antipiracy
for Circ (see Definition 3.14) as well as iO security (Lemma 3.16), then the copy-protection scheme also satisfies
(DCirc ×DX ×DX)-oracular-pseudorandomness-style CP+ anti-piracy (see Definition 3.4).

Proof of Theorem 7.4. The correctness is immediate from the correctness of UPO.
Let Program denote the algorithm that on input (C, (x1, . . . , xℓ), (y1, . . . , yℓ)) outputs runs Ĉx1,...,xℓ ← Puncture(C,

(x1, . . . , xℓ)), and then outputs the circuit Ĉ that has (y1, . . . , yℓ) and Ĉx1,...,xℓ hardcoded in it such that on every input
x ∈ X \ {x1, . . . , xℓ}, Ĉ outputs Ĉx1,...,xℓ(x) and for every input x = xj for j ∈ [ℓ], outputs yj.

We provide the (DCirc ×DX ×DX)-oracular-pseudorandomness-style copy-protection anti-piracy below. Consider
the following hybrids. The changes are highlighted in red.

H0: this corresponds to the pseudorandomness-style copy-protection security experiment. Denote the copy-protection
adversary to be (A , B, C).

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets UPO.Obf (1λ, C) and oracle access to C, where C ← DCirc(1λ),

• After the splitting experiment, along with oracle access to C \ {x1} and C \ {x2} respectively, if b = 0, B and C
receive (x1, y0

1) and (x2, y0
2) repectively, where y0

i = C(xi) for every i ∈ [2], and if b = 1, they receive (x1, y1
1)

and (x2, y1
2) repectively, where y1

i
$←− Y for every i ∈ [2].

• (B, C) output (bB , bC).

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p0.

H1: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets oracle access to Ĉ, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Program(C, (x1, x2), (y1, y2)), y1 ← C(x1), y2 ← C(x2), C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to Ĉ \ {x1} and Ĉ \ {x2} respectively, if b = 0, B and C
receive (x1, y0

1) and (x2, y0
2) repectively, where y0

i = C(xi) for every i ∈ [2], and if b = 1, they receive (x1, y1
1)

and (x2, y1
2) repectively, where y1

i
$←− Y for every i ∈ [2].

• (B, C) output (bB , bC).

46

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p1.
The only difference from H0 to H1 is that we replaced C with Ĉ. Since the functionalities of C and Ĉ are the same,

by the indistinguishability obfuscation guarantees of UPO, computational indistinguishability between the outputs of
H0 and H1 holds. Hence

|p0 − p1| ≤ ϵ1(λ),

for some negligible function ϵ1(·).

H2: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets oracle access to Ĉ, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Program(C, (x1, x2), (y1, y2)), y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to Ĉ \ {x1} and Ĉ \ {x2} respectively, if b = 0, B and C
receive (x1, y0

1) and (x2, y0
2) repectively, where y0

i = C(xi) for every i ∈ [2], and if b = 1, they receive (x1, y1
1)

and (x2, y1
2) repectively, where y1

i
$←− Y for every i ∈ [2].

• (B, C) output (bB , bC).

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p2.
The indistinguishability between the outputs of H1 and H2 holds by 2-point m-bit puncturable circuit class satisfying

(DX,DCirc)-pseudorandomness-style puncturing security of Circ with respect to Puncture. Hence

|p1 − p2| ≤ ϵ2(λ),

for some negligible function ϵ2(·).

H3: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets oracle access to Ĉ, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Program(C, (x1, x2), (y1, y2)), y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to Ĉ \ {x1} and Ĉ \ {x2} respectively, if b = 0, B and C
receive (x1, y0

1) and (x2, y0
2) repectively, where y0

i = C(xi) for every i ∈ [2], and if b = 1, they receive (x1, y1
1)

and (x2, y1
2) repectively, where y1

i = C(xi) for every i ∈ [2].

• (B, C) output (bB , bC).

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p3.
The indistinguishability between the outputs of H1 and H2 holds by 2-point m-bit puncturable circuit class satisfying

(DX,DCirc)-pseudorandomness-style puncturing security of Circ with respect to Puncture. Hence

|p2 − p3| ≤ ϵ3(λ),

for some negligible function ϵ3(·).

H4: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

47

• A gets oracle access to Ĉ, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Program(C, (x1, x2), (y1, y2)), where y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to Ĉ \ {x1} and Ĉ \ {x2} respectively, B and C receive
(x1, C(x1)) and (x2, C(x2)) respectively.

• (B, C) output (bB , bC).

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p4.
The outputs of H3 and H4 have the same distribution since the distribution over y0 and y1 was the same in H3.

Hence,
p4 = p3.

H5: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets oracle access to Ĉ, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Program(C, (x1, x2), (y1, y2)), where y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to C \ {x1} and Ĉ \ {x2} respectively, B and C receive
(x1, C(x1)) and (x2, C(x2)) respectively.

• (B, C) output (bB , bC).

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p5.
Since Ĉ \ {x1} and C \ {x1} differ in functionality only at x2, the challenge point for C , the only difference between

H4 and H5 is that we change the oracle access to B by changing the oracle output at x2.
Let qB(λ) be the number of oracle queries that B makes for some fixed polynomial qB(λ)24. In H4, for each

i ∈ [qB], let Wi
4,B denote the total weight of ith query on x2, where the ith query can be written as ∑x,y αx,y,i |x⟩I |y⟩O,

for input and output registers I and O respectively. In other words, Wi
4,B = ∑y∈Y |αx2,y,i|2. Let W4,B = ∑i Wi

4,B be the
combined weight of B’s queries on x2 as query points in H4. We will show the following claim.

Claim 7.5. E[W4,B] is negligible in λ.

Combining Claim 7.5 with the fact that qB is a polynomial in λ, we conclude that qB ·E[W4,B] is also negligible in
λ. Hence, by Theorem 2.1, where we treat T = qB , we conclude that changing the oracle output for B at x2, in H4
results in a statistically indistinguishable output distribution, i.e., {bB , bC , b}. Since the only difference between H4 and
H5 is that the oracle output for B at x2 is different, we conclude that the output distribution in H4 is computationally
indistinguishable25 from that of H5. Hence,

|p4 − p5| = ϵ5(λ),

for some negligible function ϵ5(·).
Next, we prove Claim 7.5 to complete the proof of indistinguishability for the output distributions of H4 and H5.

Proof of Claim 7.5. Let W0,B be the combined weight of B’s queries on x2 as query points in H0, i.e., W0,B =

∑i∈[qB] Wi
0,B where for each i ∈ [qB], Wi

B denotes the total weight of ith query on x2. In H0, x2 can be sampled
after B’s queries as x2 is sampled independently of B’s state and challenge x1. Therefore, since x2 are sampled from
DX, there exists a negliglbe function negl(·) defined as negl(λ) := 2−min-entropy(DX), such that for each i ∈ [qB],
E[Wi

0,B] = negl(λ), i.e., E[W0,B] = qB · negl(λ), which is negligible in the security parameter λ.
Next consider, the following distinguishing attack (A , B̂, Ĉ):

24WLOG, we can assume that B makes a fixed polynomial number of queries in all the hybrids.
25The reason this indistinguihsability is computational rather than statistical is that Claim 7.5 holds only for computationally bounded B.

48

1. B̂ runs B on the challenge and the state received from A and performs the oracle queries from B and feeds the
output back to B up until the jth query, where j $←− [qA] is sampled ahead of time. On the jth query, B̂ measures
the query input register I. Let the measurement outcome be x′. B̂ outputs x′.

2. Ĉ on receiving a challenge from the challenger, outputs the challenge itself.

For any h ∈ {0, 4}, let the probability that with adversaries (A , B̂, Ĉ) in Hh, B̂ and Ĉ outputs the same string, be peq
h .

Since the output distribution of H4 is computationally indistinguishable from that of H0, |peq
4 − peq

0 | must be
negligible in λ. However, note that by definition of B̂ and Ĉ , they output the same string if and only if x′, the measurement
outcome of a random query of B, is the same as x2, the challenge for C . Hence, for any h ∈ {0, 4},

peq
h = E

i
$←−[qB]

E[Wi
h,B] = ∑

i∈[qB]

E[Wi
h,B]

qB
=

E[Wh,B]

qB
.

Therefore, by the computational indistinguishability of the output distributions of H0 and H4, we conclude that
|E[W4,B]−E[W0,B]|

qB
= |E[W4,B]

qB
− E[W0,B

qB
]| = |peq

4 − peq
0 | is negligible, which implies that |E[W4,B]−E[W0,B]| must be

negligible in λ, since qB is polynomial in λ. Moreover since E[W0,B] is negligible as concluded above, E[W4,B] must
be negligible in λ.

H6: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets oracle access to Ĉ, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Program(C, (x1, x2), (y1, y2)), where y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to C \ {x1} and C \ {x2} respectively, B and C receive
(x1, C(x1)) and (x2, C(x2)) respectively.

• (B, C) output (bB , bC).

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p6.
Since Ĉ \ {x2} and C \ {x2} differ in functionality only at x1, the challenge point for B, the only difference between

H5 and H6 is that we change the oracle access to C by changing the oracle output at x1.
By analogous arguments as in the proof of indistinguishability of H4 and H5 but with the roles of B and C switched,

we can conclude that the outputs of H5 and H6 are computationally indistinguishable and hence,

|p6 − p5| = ϵ6(λ),

for some negligible function ϵ6(·).

H7: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets oracle access to C, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Program(C, (x1, x2), (y1, y2)), where y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to C \ {x1} and C \ {x2} respectively, B and C receive
(x1, C(x1)) and (x2, C(x2)) respectively.

• (B, C) output (bB , bC).

49

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p7.
Since Ĉ and C differ in functionality only at x1 and x2, the respective challenge points for B and C , the only

difference between H7 and H6 is that we change the oracle access to A by changing the oracle output at x1 and x2.
Let qA(λ) be the number of oracle queries that B makes for some fixed polynomial qA(λ). In H6, for each i ∈ [qA],

let Wi
6,A denote the total weight of ith query on x1 or x2, where the ith query can be written as ∑x,y αx,y,i |x⟩I |y⟩O, for

input and output registers I and O respectively. In other words, Wi
6,A = ∑x∈{x1,x2},y∈Y |αx,y,i|2. Let W6,A = ∑i Wi

2,A
be the combined weight of A’s queries on x1 or x2 as query points in H6. We will show the following claim.

Claim 7.6. E[W6,A] is negligible in λ.

Combining Claim 7.6 with the fact that qA is a polynomial in λ, we conclude that qA ·E[W6,A] is also negligible in
λ. Hence, by Theorem 2.1, where we treat T = qA , we conclude that changing the oracle output for A at x1 and x2, in
H6 results in a statistically indistinguishable output distribution, i.e., {bB , bC , b}. Since the only difference between H6
and H7 is that the oracle outputs for A at x1 and x2, are different, we conclude that the output distribution in H6 is
computationally indistinguishable26 from that of H7. Hence,

|p7 − p6| = ϵ7(λ),

for some negligible function ϵ7(·).
Next, we prove Claim 7.6 to complete the proof of indistinguishability for H6 and H7.

Proof of Claim 7.6. Let W0,A be the combined weight of A’s queries on x1 or x2, the challenge points for B and C , as
query points in H0, i.e., W0,A = ∑i∈[qA] Wi

0,A where for each i ∈ [qA], Wi
A denotes the total weight of ith query on x1

or x2. In H0, x1 and x2 can be sampled after A’s queries as x1, x2 are sampled independent of A’s input state. Therefore,
since x1, x2 are sampled from DX, there exists a negliglbe function negl(·) defined as negl(λ) := 2−min-entropy(DX),
such that for each i ∈ [qA], E[Wi

0,A] ≤ 2 · negl(λ), i.e., E[W0,A] ≤ 2qA · negl(λ), which is negligible in the security
parameter λ.

Next consider, the following distinguishing attack (Â , B̂, Ĉ):

1. Â runs A on the received program ρ from the challenger and performs the oracle queries from A and feeds the
output back to A up until the jth query, where j $←− [qA] is sampled ahead of time. On the jth query, Â measures
the query input register I. Let the measurement outcome be x′. A sends x′ to both B and C .

2. B̂ on receiving string x′ from A and a challenge string x1 from the challenger checks if x1 = x′, and if so output
0 else outputs 1.

3. Ĉ on receiving string x′ from A and a challenge string x2 from the challenger checks if x2 = x′, and if so output
0 else outputs 1.

For any h ∈ {0, 6}, let the probability that with adversaries (A , B̂, Ĉ) in Hh, B̂ and Ĉ both output the string 1, be
p11

h .
Since the output distribution of H6 is computationally indistinguishable from that of H0, |p11

6 − p11
0 | must be

negligible in λ. However, note that by definition of Â , B̂, Ĉ , B̂ and Ĉ both output 1 if and only if x′, the measurement
outcome of a random query of A , satisfies x′ ̸= x1 and x′ ̸= x2, i.e., x′ ̸∈ {x1, x2}.

Hence, for any h ∈ {0, 6},

p11
h = 1− Pr

[
x′ ∈ {x1, x2}

]
= 1−E

i
$←−[qA]

E[Wi
h,A] = 1− ∑

i∈[qA]

E[Wi
h,A]

qA
= 1−

E[Wh,A]

qA
.

Therefore, by the computational indistinguishability of H0 and H6, we conclude that |E[W6,A]−E[W0,A]|
qA

= |p11
6 − p11

0 | is
negligible, which implies that |E[W6,A]−E[W0,A]| must be negligible in λ because qA is polynomial in λ. Moreover
since E[W0,A] is negligible as concluded above, E[W6,A] must be negligible in λ.

26The reason this indistinguishability is computational rather than statistical is that Claim 7.6 holds only for computationally bounded A .

50

H8: this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and b $←− {0, 1},

• A gets oracle access to C, and the state UPO.Obf (1λ, Ĉ), where if b = 0, Ĉ = C, C ← DCirc(1λ), else
Ĉ ← Programcanonical(C, (x1, x2), (y1, y2)), where y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to C \ {x1} and C \ {x2} respectively, B and C receive
(x1, C(x1)) and (x2, C(x2)) respectively.

• (B, C) output (bB , bC).

The output of the hybrid is bB , bC , b. Denote the probability that bB = bC = b to be p8.
The only difference between H7 and H8 is that we replace Program with Programcanonical , and since the

output circuits of both Program and Programcanonical have the same functionality by the puncturing correctness (see
Definition 3.10), by the iO security of UPO, the outputs of H7 and H8 must be computationally indistinguishable, and
hence,

|p7 − p8| = ϵ8(λ),

for some negligible function ϵ8(·).

Reduction to UPO Let (A , B, C) be an adversary in H8. We will construct a reduction adversary (RA ,RB ,RC) in
the DX ×DX-generalized UPO anti-piracy game.

• RA samples a circuit C ← DCirc(1λ) and y1, y2
$←− and sends (C, 1y1 , 1y2) to the challenger, where the

programmed circuits (at the points of puncture) 1y1 and 1y2 are the constant circuits always outputting y1 and y2,
respectively.

• On receiving an obfuscated state ρ from the challenger,RA runs σB,C ← AC(ρ) using the knowledge of C, and
sends the corresponding registers of σB,C to B and C along with the description of C to both B and C .

• RB on receiveing xB computes yB ← C(xB) and runs bB ← BC\{x1}(σB , (xB , yB)) using the knowledge of C
and x1, and outputs bB .

• RC on input xC does the symmetrical version of above using xC , C and σC , and outputs bC .

Clearly, the view of (A , B, C) as simulated above by (RA ,RB ,RC) is the same as their view in H8, and the event
b = bB = bC in the above UPO game exactly corresponds to the event b = bB = bC in H8 which completes the proof
of (DCirc ×DX ×DX)-oracular-pseudorandomness-style copy-protection anti-piracy.

For the “Moreover” part, we note that if we can start from the (DCirc×DX×DX)-oracular-pseudorandomness-style
CP+ antipiracy game, then following the same hybrid arguments as above, we will get to the following “+”-version of
H8. The differences between H8 and H+

8 are indicated in blue.
H+

8 : this hybrid is defined as follows:

• Sample x1 ← DX and x2 ← DX independently, and bB , bC
$←− {0, 1},

• A gets oracle access to C, and the state UPO.Obf (1λ, Ĉ), where if bB = bC = 0, Ĉ = C, C ← DCirc(1λ), if bB =

bC = 1, Ĉ ← Programcanonical(C, (x1, x2), (y1, y2)), if bB = 0, bC = 1, Ĉ ← Programcanonical(C, (x2), (y2)),
and if bB = 1, bC = 0, Ĉ ← Programcanonical(C, (x1), (y1)), where y1, y2

$←− Y, C ← DCirc(1λ).

• After the splitting experiment, along with oracle access to C \ {x1} and C \ {x2} respectively, B and C receive
(x1, C(x1)) and (x2, C(x2)) respectively.

• (B, C) output (b′B , b′C).

51

The output of the hybrid is bB , bC , b′B , b′C . Denote the probability that b′B ⊕ b′C = bB ⊕ bC be p+8 .
By the same hybrid arguments as between H0 and H8, we get that the success probability in the original

(DCirc ×DX ×DX)-oracular-pseudorandomness-style CP+ antipiracy game is negligibly close to p+8 . Moreover, it is
easy to check that the success probability of the same reduction adversary (RA ,RB ,RC) as described above, but in
the DX ×DX-generalized-UPO+antipiracy game, is also p+8 . Hence, by the DX ×DX-generalized-UPO+antipiracy
of UPO, the success probability in the original copy-protection+ antipiracy game is at most 1/2 + negl(λ) for some
negligible function negl(·).

Combining Theorem 7.4 with Theorems 3.17 and 5.1, we get the following corollary.

Corollary 7.7 (Copy-protection with pseudorandomness-style CP+ anti-piracy from concrete assumptions). Let
X = {0, 1}n where n = n(λ) is a polynomial in λ, and let DX be a high min-entropy distribution on the input space
X and (Circ, Puncture) be a puncturable circuit class satisfying 2-point m-bit (DX,DCirc)-pseudorandomness-style
puncturing security (Definition 7.1). Then, assuming the existence of polynomially secure iO and the LWE assumption,
there exists a copy-protection scheme for Circ that satisfies (DCirc ×DX ×DX)-oracular-pseudorandomness-style CP+
anti-piracy (Definition 3.4). Moreover, if DX = UniformX, then we can replace the LWE assumption with the existence
of OWFs.

8 Oracular Unpredictability-Style Copy-Protection
We begin with recalling the copy-protection construction [AB24] from UPO for puncturable circuit classes that satisfy
2-point m-bit unpredictability-style puncturing security27, for m ∈ ω(log(λ)).

Theorem 8.1 (Adapted from [AB24, Theorem 56]). LetDX be a high min-entropy distribution on the input space X and
(Circ, Puncture) be a puncturable circuit class satisfying 2-point m-bit (DX,DCirc)-unpredictability-style puncturing
security, where m ∈ ω(log λ) (see Definition 7.1). Then any UPO scheme UPO = (Obf , Eval) that satisfies (DX×DX)
UPO anti-piracy for Circ with respect to Puncture (see Definition 3.12), is also a (DCirc ×DX ×DX)-unpredictability-
style copy-protection scheme for Circ (see Definition 3.1) with CopyProtect = UPO.Obf and Eval = UPO.Eval .28

Combining with Theorems 3.17 and 5.1, we get the following immediate corollary.

Corollary 8.2. Let X = {0, 1}n where n = n(λ) is a polynomial in λ, and let DX be a high min-entropy distribution
on the input space X and (Circ, Puncture) be a puncturable circuit class satisfying 2-point m-bit (DX,DCirc)-
unpredictability-style puncturing security (see Definition 7.1). Then, assuming the existence of polynomially secure iO
and the LWE assumption, there exists a copy-protection scheme for Circ satisfying (DCirc×DX×DX)-unpredictability-
style CP anti-piracy (see Definition 3.1). Moreover, if DX = UniformX, then we can replace the LWE assumption with
the existence of OWFs.

Remark 8.3 (Upgrade to oracular CP anti-piracy). The anti-piracy notions for copy-protection considered in [AB24] are
non-oracular, which is reflected in the copy-protection anti-piracy notions yielded in Theorem 8.1 and Corollary 8.2.
However, by the same hybrid arguments as in the proof of Theorem 7.4 (H4 to H7), the copy-protection anti-piracy
guarantees provided in Theorem 8.1 and Corollary 8.2 can be upgraded to satisfy oracular unpredictability-style CP
anti-piracy.

8.1 Progmaskable circuit classes
In [AB24], the authors introduced the notion of Preimage-sampleability for evasive functions that captures a wide
variety of evasive circuit classes, including point functions and k-point functions. In this section, we will study

27In [AB24], the authors only considered a single definition of puncturing security, that coincides with 2-point m-bit unpredictability-style
puncturing security that we defined in Definition 7.1

28In [AB24], the authors only considered the uniformly random challenge distribution, i.e., DX = UniformX, but it can be easily checked that their
proof also generalizes to any high min-entropy challenge distribution DX, as long as the puncturing security and UPO anti-piracy also holds with
respect to DX.

52

the notion of Progmaskability, which can be intuitively seen as a generalization of Preimage-sampleability beyond
evasive circuit classes and beyond boolean output functions, such that it captures other classes of circuit classes,
such as puncturable secure circuit classes (see Theorem 8.18). Moreover, we simplify the need for an auxiliary
circuit class in Preimage-sampleability by demanding the circuit class itself to be the auxiliary circuit class. Hence,
formally, Progmaskability is a generalization of a subclass of Preimage-sampleability where the auxiliary circuit
class and the distribution on it are respectively the same as the circuit class and the distribution on it. We note that
interesting instantiations of Preimage-sampleable evasive circuit classes, such as k-point functions, satisfy this subclass
of Preimage-sampleability. Finally, note that Preimage-sampleability is defined with respect to a single input point. We
also generalize this aspect to consider multiple input points, and define ℓ-point Progmaskability for any ℓ ∈ poly(λ).
These generalizations from Preimage-sampleability to Progmaskability are formally proved in Theorem 8.6.
For a circuit C : X→ Y, for every y ∈ Y, we define C−1(y) = {x ∈ X : C(x) = y}.

Definition 8.4. We say that a circuit class Circ is ℓ-points (DXℓ , D̃X,DY,DCirc)-Progmaskable if there exists an
efficient algorithm Program and an efficiently sampleable distribution D̃X such that the following two distributions are
computationally indistinguishable:

• D0(1λ): outputs (C, x1, . . . , xℓ), where:

– C ← DCirc(1λ) 29,
– x1, . . . , xℓ ← DXℓ(C).

• D1(1λ): outputs (Ĉ, x1, . . . , xℓ), where:

– C ← DCirc(1λ),

– x1 ← D̃X, . . . , xℓ ← D̃X,
– y1, . . . , yℓ ← DY(C, x1, . . . , xℓ) and,

– Ĉ ← Program(C, (x1, . . . , xℓ), (y1, . . . , yℓ)), where:

Ĉ(x′) =
{

C(x′) if x′ ̸∈ {x1, . . . , xℓ},
yi if x′ = xi∀i ∈ [ℓ].

When the context is clear, we will omit DCirc. We emphasize that both the distributions DXℓ and DY do depend
on the circuit C. Additionally, the distribution DY also depends on the input x. For non-triviality we only consider
DY(C, x1, x2, . . . , xℓ) that is different from the trivial distribution that outputs C(x1), . . . , C(xℓ).

A special case of the above definition is when the sampling procedure DY(C, x) is defined as follows:

Definition 8.5 (Special case (half-correct distribution).). A distribution DY(C, x) is called a half-correct distribution
or simply Dhalf-correct

Y if DY(C, x) is sampled as follows:

• With probability 0.5, output yi = C(xi) for every i ∈ [ℓ] and,

• With probability 0.5, output {y1, . . . , yℓ}, where yi
$←− Y \ {C(x)} for every i ∈ [ℓ].

Next, we discuss some interesting instantiations of Progmaskable circuit classes.

Theorem 8.6. Any Preimage-sampleable evasive circuit class (Circ,DCirc)with respect to itself (i.e., the Preimage-sampleability
holds with respect to (Circ,DCirc) as the auxilliary circuit class and distribution) and puncturing algorithm Program
is 1-point 1-bit (DEvasive

X , UniformX,Dhalf-correct
X ,DCirc)-Progmaskable with respect to ̂Program, where ̂Program

on input (C, (x1, . . . , xℓ), (y1, . . . , yℓ)) checks if yi = C(xi) for every i ∈ [ℓ] and if so outputs C, else outputs
Program(C, (x1, . . . , xℓ), (y1, . . . , yℓ)), and DEvasive

X is defined as:

1. With probability 1/2, DEvasive
X (C) outputs x $←− S(C), where S(C) is the set of all preimages of 1 under C.

29WLOG, we view DCirc as outputting a key or index that corresponds to the circuit C in the circuit class Circ.

53

2. With probability 1/2, DEvasive
X (C) outputs x $←− X.

Proof of Theorem 8.6. By definition of ̂Program andDhalf-correct
Y (see Definition 8.5), we can decompose the distribution

D1 in Definition 8.4 with respect to (DEvasive
X , UniformX,Dhalf-correct

X ,DCirc) as:

1. With probability 1/2, outputs C, x where C ← DCirc(1λ), and x $←− X.

2. With probability 1/2, outputs Ĉ, x where Ĉ ← Program(C, x, 1− y), y← C(x), C ← DCirc(1λ), and x $←− X.

We call the above sampler H0, and consider the following hybrid samplers.
H1:

1. With probability 1/2, outputs C, x where C ← DCirc(1λ), and x $←− X.

2. With probability 1/2, outputs Ĉ, x where Ĉ ← Program(C, x, 1), C ← DCirc(1λ), and x $←− X.

Since Circ is evasive, C(x) = 0 for C ← DCirc(1λ), and x $←− X with overwhelming probability. Hence, H0, i.e., D1
with respect to (DEvasive

X , UniformX,Dhalf-correct
X ,DCirc) is statitically indistinguihsable from H1, i.e., the outputs of

H0 and H1 are statistically indistinguishable.
H2:

1. With probability 1/2, outputs C, x where C ← DCirc(1λ), and x $←− X.

2. With probability 1/2, outputs (C, x) where x ← S(C), C ← DCirc, and S(C) denotes the preimage set of 1
under C.

By the Preimage-sampleability property, the conditional distribution in Item 2 in H1, is computationally indistinguishable
from Item 2 in H2. Hence, the outputs of H1 and H2 must be computationally indistinguishable.

Note that by definition of D0 in Definition 8.4 with respect to (DEvasive
X , UniformX,Dhalf-correct

X ,DCirc), H2 is the
same as D0. Hence, we conclude that the output distribution of D1, (which is the same as that of H0) is computationally
indistinguishable from that of D0 (which is the same as that of H2), which concludes the proof of Progmaskability for
Circ.

8.1.1 k-Point Functions for k greater than 1

Consider the following class of functions Funck = { fS : {0, 1}n → {0, 1} : S ⊆ {0, 1}n, |S| = k}, where fS is
defined as follows:

fS(x) =
{

1 if x ∈ S,
0 otherwise.

There is an efficiently computable circuit class Circk that implements Funck as long as k is polynomial in n. That is, for
every fS, there is a unique circuit CS whose implementation is specified as follows: on input x,

• If x ∈ S, output 1.

• Else, output 0.

Define the sampler for DCirck as follows: first sample a uniformly random set S ⊆ {0, 1}n such that |S| = k. Output S.

Definition 8.7. We define the distribution DEvasive
Xℓ (S) which samples as follows.

• With probability 1/2, sample x1, . . . , xℓ
$←− (S

ℓ), see Section 2.

54

• Otherwise, sample xi
$←− ({0, 1}n\S) independently for each i ∈ [ℓ].

We consider Dhalf-correct
Y to be the half-correct distribution (see Definition 8.5), and UniformX to be the uniformly

random distribution on X.

Remark 8.8 (Viewing obfuscated keyed-circuit classes). For a circuit class Circ, we consider the obfuscated circuit class
iO(Circ) := {iO(1λ, C) : C ∈ Circ}, where we view iO(Circ) as indexed with {C, r} where C is an index in Circ
and r is the randomness required to run the iO compiler.

Theorem 8.9. Let k ≥ ℓ, where k := k(λ), ℓ := ℓ(λ) are both polynomials in the security parameter λ, and let
X := X(λ) be a super-polynomial-sized domain (in the security parameter λ). Let Circk := {CS}S∈(X

[k])
be a set

of circuits implementing Funck, the set of all k-point functions on X, i.e., Boolean functions on X that have exactly
k-preimages of 1, where for each S ⊂ X, |S| = k, CS denotes the k-point function circuit with S as the preimage of 1.

Assuming post-quantum iO exists and post-quantum one-way functions exists, iO(Circk) satisfies (D̃Evasive
Xℓ , UniformX,Dhalf-correct

Y , D̃Circk)-
Progmaskability (see Definition 8.5) with respect to an efficient algorithm Program defined as follows: on input
(S, (x1, x2, . . . , xℓ), (y1, y2, . . . , yℓ)), it outputs Ĉ ← iO(1λ, C′) where C′(x′) is defined as follows:

• If x′ = xi for some i, output yi,

• Else, output CS(x′),

and where the distribution D̃Circk over k-point functions is defined as:

• Sample a uniform random subset S of X of size k.

• Sample randomness r for iO and output (S, r) which corresponds to the circuit iO(1λ, CS; r).

and D̃Evasive
Xℓ(S, r) := DEvasive

Xℓ (S) where DEvasive
Xℓ is as defined in Definition 8.7,

Proof of Theorem 8.9. We first prove the following claim.

Claim 8.10. Let D := D(λ) be a super-polynomial-sized set in λ. Assuming the existence of a keyed injective
U-one-way function IOWF (see Definition 2.5) with domain D, which can be constructed from post-quantum iO and
one-way functions [BPW16], the following two distributions are indistinguishable.

• The membership circuit iO(CS) where S is a uniform random subset of D of size k + 1.

• The membership circuit iO(CS) where S is a uniform random subset of D of size k.

Proof. We describe the hybrids below.
H0: iO(CS) where S is a uniform random subset of D of size k + 1. This is the first distribution.
H1: iO(Ĉ) where Ĉ is sampled as follows:

1. Sample a uniform subset S of D of size k.

2. Sample a uniform random point x∗ ∈ D\S.

3. Ĉ ← Program(S, x∗, 1).

Note that the distribution of Ĉ is exactly the distribution of CS in H0. By iO security, H0 and H1 are computationally
indistinguishable.
H2: iO(Ĉ) where Ĉ is sampled as follows:

1. Sample a uniform subset S of D of size k.

2. Sample a uniform random point x∗ $←− D.

55

3. Ĉ ← Program(S, x∗, 1).

H1 and H2 are negligibly close because k
|D| is negligible.

H3: iO(Ĉ) where Ĉ is sampled as follows:

1. Sample a uniform subset S of D of size k.

2. Sample a uniform random point x∗ $←− D.

3. Sample F← IOWF.Gen(1λ).

4. Ĉ be the following circuit:

Ĉ(x) =

{
1 F(x) = y∗,
CS(x) otherwise,

where the hardcoded value y∗ = F(x∗).

Note that except with negligible probability over the generation of F, the functionalities of Ĉ(x) in H2 and H3 are the
same since except with negligible probability over the generation of F, F is injective. Therefore, by iO security, H2 and
H3 are computationally indistinguishable.
H4: iO(Ĉ) where Ĉ is sampled as follows:

1. Sample a uniform subset S of D of size k.

2. Sample a uniform random point x∗ $←− D.

3. Ĉ is the circuit CS.

Note that the circuits under iO in H3 and H4 differ only at the point x∗. Since every indistinguishability obfuscator is
also a single-point differing input obfuscator (diO) (see Ref. [BCP14]), by the single-point diO security of iO, if H3
and H4 are computationally indistinguishable, then there exists an algorithm that, given the circuits Ĉ from H3 and H4
can compute x∗. However, note that Ĉ in both hybrids can be computed given just y∗ and F, and hence we can construct
an inverter for the keyed one-way function IOWF. Hence, if H3 and H4 are computationally indistinguishable, then we
can violate the one-wayness of IOWF. Therefore, H3 and H4 must be computationally indistinguishable.

Now we prove Theorem 8.9 using Claim 8.10.We describe the hybrids below.
H0: This is the hybrid that describes D1 in the Progmaskability definition.

• Sample S ⊆ X uniformly at random so that |S| = k.

• Sample x∗1 ← UniformX, . . . , x∗ℓ ← UniformX.

• Sample b $←− {0, 1}.

• Output (iO(Program(CS, (x∗1 , x∗2 , . . . x∗ℓ), (CS(x∗1)⊕ b, CS(x∗2)⊕ b, . . . , CS(x∗ℓ)⊕ b)), (x∗1 , x∗2 , . . . x∗ℓ)).

H1: Similar to H0 but we sample x∗1 , . . . , x∗ℓ uniformly at random conditioned on them being distinct.

• Sample {x∗1 , x∗2 , . . . , x∗ℓ}
$←− (X

ℓ).

• Sample b $←− {0, 1}.

• Sample S ⊆ X\{x∗1 , x∗2 , . . . x∗ℓ} uniformly at random so that |S| = k.

• Output (iO(Program(CS, (x∗1 , x∗2 , . . . x∗ℓ), (b, b, . . . , b)), (x∗1 , x∗2 , . . . x∗ℓ)).

56

Note that X = {0, 1}n, and since k/2n and ℓ/2n are negligible, with 1− negl probability in H0, we have all x∗i are all
distinct and none of them are in S. Thus H0 and H1 are statistically indistinguishable.
H2: In this hybird we modify the size of S.

• Sample {x∗1 , x∗2 , . . . , x∗ℓ}
$←− (X

ℓ).

• Sample b $←− {0, 1}.

• If b = 0, sample S′ ⊆ X\{x∗1 , x∗2 , . . . x∗ℓ} uniformly at random so that |S′| = k. Otherwise, sample
S′ ⊆ X\{x∗1 , x∗2 , . . . x∗ℓ} uniformly at random so that |S′| = k− ℓ.

• Output (iO(Program(CS′ , (x∗1 , x∗2 , . . . x∗ℓ), (b, b, . . . , b)), (x∗1 , x∗2 , . . . x∗ℓ)).

Using Claim 8.10 multiple times with the domain D = X\{x∗1 , x∗2 , . . . x∗ℓ}, we see that H1 is computationally
indistinguishable from H2.
H3: This is the hybrid that describes D0 in the Progmaskability definition.

• Sample S ⊆ X uniformly at random so that |S| = k.

• Sample (x∗1 , x∗2 , . . . x∗ℓ)← D
Evasive
Xℓ (S).

• Output (iO(CS), (x∗1 , x∗2 , . . . x∗ℓ)).

Note that in H3, the number of point with value 1 in the final outputted circuit iO(Program(CS′ , (x∗1 , x∗2 , . . . x∗ℓ), (b, b, . . . , b)))
is exactly k. These points are S′ if b = 0 and are the union of S′ and {x∗1 , . . . , x∗ℓ} if b = 1. Note that the union of S′

and {x∗1 , . . . , x∗ℓ} is a uniform subset of X of size k. Thus, by iO security, this circuit is indistinguishable from iO(CS)
for a uniform random subset S ⊆ X of size k.

8.2 Oracular Unpredictability-Style Copy-Protection for Progmaskable Circuits
Let X = {0, 1}λ be the input space.

Theorem 8.11. Let (Circ, Program) be a 2-point (DX2 , D̃X,DY,DCirc) Progmaskable circuit class, such that D̃X has
min-entropy at least λϵ for some ϵ ≥ 0, and DY is the half-correct distribution (see Definition 8.5). Then, any UPO
scheme UPO = (Obf , Eval) satisfying (D̃X × D̃X)-generalized UPO security for Circ with respect to Programcanonical ,
as well as iO security, is also a copy-protection scheme (CopyProtect , Eval) for Circ with CopyProtect = UPO.Obf and
Eval = UPO.Eval , satisfying 1/2-oracular-DX2,Circ-unpredictable-style-CP anti-piracy, where DX2,Circ is defined as:
C, x1, x2 ← DX2,Circ(1

λ), where x1, x2 ← DX2(C) and C ← DCirc(1λ).

Proof of Theorem 8.11. The correctness of (CopyProtect , Eval) is immediate from the correctness of UPO. Next, we
prove security. We assume that Circ satisfies (DX, D̃X,DY,DCirc)-Progmaskability property, whereDY is a half-correct
distribution (see Definition 8.5).

We provide the proof of security below. Consider the following hybrids. The changes are highlighted in red.

H0: this corresponds to the unpredictability-style copy-protection security experiment. Denote the copy-protection
adversary to be (A , B, C).

• A gets UPO.Obf (1λ, C) and oracle access to C, where C ← DCirc(1λ).

• Sample x1, x2 ← DX2(C).

• After the splitting experiment, B receives x1 and oracle access to C \ {x1}, and C receives x2 and oracle access
to C \ {x2}30.

30Here oracle access to C \ S for some set of points S refers to the oracle access to a function that outputs C(z) on all points z ̸∈ S and outputs ⊥ if
z ∈ S.

57

• (B, C) output (yB , yC).

The output of the hybrid is C, x1, x2, yB , yC . Denote the probability that (yB , yC) = (C(x1), C(x2)) to be p0.

H1: this hybrid is defined as follows:

• A gets UPO.Obf (1λ, Ĉ) and oracle access to Ĉ, where:

– C ← DCirc(1λ),

– x1 ← D̃X, x2 ← D̃X.
– y1, y2 ← DY(C, x1, x2) and,

– Ĉ ← Program(C, (x1, x2), (y1, y2)).

• After the splitting experiment, B receives x1 and oracle access to Ĉ \ {x1}, and C receives x2 and oracle access
to Ĉ \ {x2}.

• (B, C) output (yB , yC).

The output of the hybrid is Ĉ, x1, x2, yB , yC . Denote the probability that (yB , yC) = (Ĉ(x1), Ĉ(x2)) to be p1.

From the Progmaskability property, the outputs of H0 and H1 are computationally indistinguishable. Hence,

|p1 − p0| = ϵ1(λ), (4)

for some negligible function ϵ1(·).

H2: this hybrid is defined as follows:

• A gets UPO.Obf (1λ, Ĉ) and oracle access to Ĉ, where:

– C ← DCirc(1λ),

– x1 ← D̃X, x2 ← D̃X.

– Sample a bit b $←− {0, 1} uniformly at random, and if b = 0 set Ĉ = C, else if b = 1, sample
y1

$←− Y \ {C(x1)}, y2
$←− Y \ {C(x2)} and set,

– Ĉ ← Program(C, (x1, x2), (y1, y2)).

• After the splitting experiment, B receives x1 and oracle access to Ĉ \ {x1}, and C receives x2 and oracle access
to Ĉ \ {x2}.

• (B, C) output (yB , yC).

The output of the hybrid is Ĉ, x1, x2, yB , yC . Denote the probability that (yB , yC) = (Ĉ(x1), Ĉ(x2)) to be p2.

Note that H2 is the union of two events b = 0 and b = 1, each with probability half, where the event b = 1 in H2
is identically distributed as the event yB ̸= C(x1) ∧ yC ̸= C(x2) in H1, which happens with probability 1

2 . On the
other hand, the event b = 0 in H2 is computationally indistinguishable from the event yB = C(x1) ∧ yC = C(x2) in
H1 which happens with probability 1

2 , by the io-security of the underlying UPO, UPO = (Obf , Eval). Hence, by the
io-security of UPO, H2 and H1 are computationally indistinguishable. Therefore,

|p2 − p1| = ϵ2(λ), (5)

for some negligible function ϵ2(·).
H3: this hybrid is defined as follows:

58

• A gets UPO.Obf (1λ, Ĉ) and oracle access to Ĉ, where:

– C ← DCirc(1λ),

– x1 ← D̃X, x2 ← D̃X.

– Sample a bit b $←− {0, 1} uniformly at random, and if b = 0 set Ĉ = C, else if b = 1, sample
y1

$←− Y \ {C(x1)}, y2
$←− Y \ {C(x2)} and set,

– Ĉ ← Program(C, (x1, x2), (y1, y2)).

• After the splitting experiment, B receives x1 and oracle access to C \ {x1}, and C receives x2 and oracle access
to Ĉ \ {x2}.

• (B, C) output (yB , yC).

The output of the hybrid is Ĉ, x1, x2, yB , yC . Denote the probability that (yB , yC) = (Ĉ(x1), Ĉ(x2)) to be p3.

Since Ĉ \ {x1} and C \ {x1} differ in functionality only at x2, the challenge point for C , the only difference between
H2 and H3 is that we change the oracle access to B by changing the oracle output at x2.

Let qB(λ) be the number of oracle queries that B makes for some fixed polynomial qB(λ)31. In H2, for each
i ∈ [qB], let Wi

2,B denote the total weight of ith query on x2, where the ith query can be written as ∑x,y αx,y,i |x⟩I |y⟩O,
for input and output registers I and O respectively. In other words, Wi

2,B = ∑y∈Y |αx2,y,i|2. Let W2,B = ∑i Wi
2,B be the

combined weight of B’s queries on x2 as query points in H2. We will show the following claim.

Claim 8.12. E[W2,B] is negligible in λ.

Combining Claim 8.12 with the fact that qB is a polynomial in λ, we conclude that qB ·E[W4,B] is also negligible
in λ. Hence, by Theorem 2.1, where we treat T = qB , we conclude that changing the oracle output for B at x2 in
H2 results in a statistically indistinguishable output distribution, i.e., {Ĉ, x1, x2, yB , yC}. Since the only difference
between H2 and H3 is that the oracle output for B at x2 is different, we conclude that the output distribution in H2 is
computationally indistinguishable32 from that of H3. Hence,

|p3 − p2| = ϵ3(λ), (6)

for some negligible function ϵ3(·).
Next, we prove Claim 8.12 to complete the proof of indistinguishability for H2 and H3.

Proof of Claim 8.12. Let W0,B be the combined weight of B’s queries on x2 as query points in H0, i.e., W0,B =

∑i∈[qB] Wi
0,B where for each i ∈ [qB], Wi

B denotes the total weight of ith query on x2. In H0, x2 can be sampled
after B’s queries as x2 is sampled independently of B’s state and challenge x1. Therefore, since x2 is sampled from
D̃X, there exists a negliglbe function negl(·) defined as negl(λ) := 2−min-entropy(D̃X(1λ)), such that for each i ∈ [qB],
E[Wi

0,B] = negl(λ), i.e., E[W0,B] = qB · negl(λ), which is negligible in the security parameter λ.
Next consider, the following distinguishing attack (A , B̂, Ĉ):

1. B̂ runs B on the challenge and the state received from A and performs the oracle queries from B and feeds the
output back to B up until the jth query, where j $←− [qB] is sampled ahead of time. On the jth query, B̂ measures
the query input register I. Let the measurement outcome be x′. B̂ outputs x′.

2. Ĉ on receiving a challenge from the challenger, outputs the challenge itself.
31WLOG, we can assume that B makes a fixed polynomial number of queries in all the hybrids.
32The reason this indistinguihsability is computational rather than statistical is that Claim 8.12 holds only for computationally bounded B.

59

For any h ∈ {0, 2}, let the probability that with adversaries (A , B̂, Ĉ) in Hh, B̂ and Ĉ outputs the same string, be peq
h .

Since the output distribution of H2 is computationally indistinguishable from that of H0, |peq
2 − peq

0 | must be
negligible in λ. However, note that by definition of B̂ and Ĉ , they output the same string if and only if x′, the
measurement outcome of a random query of B, is the same as x2, the challenge for C . Hence, for any h ∈ {0, 2},
peq

h = E
i

$←−[qB]
E[Wi

h,B] =
∑i∈[qB] E[Wi

h,B]

qB
=

E[Wh,B]
qB

. Therefore, by the computational indistinguishability of the

output distributions of H0 and H2, we conclude that |E[W2,B]
qB

− E[W0,B]
qB
| is negligible in λ, which implies that

|E[W2,B]−E[W0,B]| must be negligible in λ, because qB is polynomial in λ. Moreover since E[W0,B] is negligible as
concluded above, E[W2,B] must be negligible in λ.

H4: this hybrid is defined as follows:

• A gets UPO.Obf (1λ, Ĉ) and oracle access to Ĉ, where:

– C ← DCirc(1λ),

– x1 ← D̃X, x2 ← D̃X.

– Sample a bit b $←− {0, 1} uniformly at random, and if b = 0 set Ĉ = C, else if b = 1, sample
y1

$←− Y \ {C(x1)}, y2
$←− Y \ {C(x2)} and set,

– Ĉ ← Program(C, (x1, x2), (y1, y2)).

• After the splitting experiment, B receives x1 and oracle access to C \ {x1}, and C receives x2 and oracle access
to C \ {x2}.

• (B, C) output (yB , yC).

The output of the hybrid is Ĉ, x1, x2, yB , yC . Denote the probability that (yB , yC) = (Ĉ(x1), Ĉ(x2)) to be p4.

Since Ĉ \ {x2} and C \ {x2} differ in functionality only at x1, the challenge point for B, the only difference between
H3 and H4 is that we change the oracle access to C by changing the oracle output at x1.

By analogous arguments as in the proof of indistinguishability of H2 and H3 but with the roles of B and C switched,
we can conclude that the outputs of H3 and H4 are computationally indistinguishable and hence,

|p4 − p3| = ϵ4(λ), (7)

for some negligible function ϵ4(·).
H5: this hybrid is defined as follows:

• A gets UPO.Obf (1λ, C) and oracle access to C, where:

– C ← DCirc(1λ),

– x1 ← D̃X, x2 ← D̃X.

– Sample a bit b $←− {0, 1} uniformly at random, and if b = 0 set Ĉ = C, else if b = 1, sample
y1

$←− Y \ {C(x1)}, y2
$←− Y \ {C(x2)} and set,

– Ĉ ← Program(C, (x1, x2), (y1, y2)).

• After the splitting experiment, B receives x1 and oracle access to C \ {x1}, and C receives x2 and oracle access
to C \ {x2}.

• (B, C) output (yB , yC).

60

The output of the hybrid is Ĉ, x1, x2, yB , yC . Denote the probability that (yB , yC) = (Ĉ(x1), Ĉ(x2)) to be p5.

Since Ĉ and C differ in functionality only at x1 and x2, the respective challenge points for B and C , the only
difference between H4 and H5 is that we change the oracle access to A by changing the oracle output at x1 and x2.

Let qA(λ) be the number of oracle queries that B makes for some fixed polynomial qA(λ). In H4, for each i ∈ [qA],
let Wi

4,A denote the total weight of ith query on x1 or x2, where the ith query can be written as ∑x,y αx,y,i |x⟩I |y⟩O, for
input and output registers I and O respectively. In other words, Wi

4,A = ∑x∈{x1,x2},y∈Y |αx,y,i|2. Let W4,A = ∑i Wi
2,A

be the combined weight of A’s queries on x1 or x2 as query points in H4. We will show the following claim.

Claim 8.13. E[W4,A] is negligible in λ.

Combining Claim 8.13 with the fact that qA is a polynomial in λ, we conclude that qA ·E[W4,A] is also negligible
in λ. Hence, by Theorem 2.1, where we treat T = qA , we conclude that changing the oracle output for A at x1 and x2,
in H4 results in a statistically indistinguishable output distribution, i.e., {Ĉ, x1, x2, yB , yC}. Since the only difference
between H4 and H5 is that the oracle outputs for A at x1 and x2, are different, we conclude that the output distribution
in H4 is computationally indistinguishable33 from that of H5. Hence,

|p5 − p4| = ϵ5(λ), (8)

for some negligible function ϵ5(·).
Next, we prove Claim 8.13 to complete the proof of indistinguishability for H4 and H5.

Proof of Claim 8.13. Let W0,A be the combined weight of A’s queries on x1 or x2, the challenge points for B and C , as
query points in H0, i.e., W0,A = ∑i∈[qA] Wi

0,A where for each i ∈ [qA], Wi
A denotes the total weight of ith query on x1

or x2. In H0, x1 and x2 can be sampled after A’s queries as x1, x2 are sampled independent of A’s input state. Therefore,
since x1, x2 are sampled from D̃X, there exists a negliglbe function negl(·) defined as negl(λ) := 2−min-entropy(D̃X),
such that for each i ∈ [qA], E[Wi

0,A] ≤ 2 · negl(λ), i.e., E[W0,A] ≤ 2qA · negl(λ), which is negligible in the security
parameter λ.

Next consider, the following distinguishing attack (Â , B̂, Ĉ):

1. Â runs A on the received program ρ from the challenger and performs the oracle queries from A and feeds the
output back to A up until the jth query, where j $←− [qA] is sampled ahead of time. On the jth query, Â measures
the query input register I. Let the measurement outcome be x′. A sends x′ to both B and C .

2. B̂ on receiving string x′ from A and a challenge string x1 from the challenger checks if x1 = x′, and if so output
0 else outputs 1.

3. Ĉ on receiving string x′ from A and a challenge string x2 from the challenger checks if x2 = x′, and if so output
0 else outputs 1.

For any h ∈ {0, 4}, let the probability that with adversaries (A , B̂, Ĉ) in Hh, B̂ and Ĉ both output the string 1, be
p11

h .
Since the output distribution of H4 is computationally indistinguishable from that of H0, |p11

4 − p11
0 | must be

negligible in λ. However, note that by definition of Â , B̂, Ĉ , B̂ and Ĉ both output 1 if and only if x′, the measurement
outcome of a random query of A , satisfies x′ ̸= x1 and x′ ̸= x2, i.e., x′ ̸∈ {x1, x2}.

Hence, for any h ∈ {0, 4},

p11
h = Pr

[
x′ ̸∈ {x1, x2}

]
= 1− Pr

[
x′ ∈ {x1, x2}

]
= 1−E

i
$←−[qA]

E[Wi
h,A] = 1− ∑

i∈[qA]

E[Wi
h,A]

qA
= 1−

E[Wh,A]

qA
.

Therefore, by the computational indistinguishability of H0 and H4, we conclude that |E[W4,A]−E[W0,A]|
qA

= |p11
4 − p11

0 |
is negligible in λ, which implies that |E[W4,A]−E[W0,A]| must be negligible in λ, since qA is a polynomial in λ.
Moreover since E[W0,A] is negligible as concluded above, E[W4,A] must be negligible in λ.

33The reason this indistinguihsability is computational rather than statistical is that Claim 8.13 holds only for computationally bounded A .

61

H6: In this hybrid, we change the algorithm Program with the cannonical algorithm Programcanonical , i.e., H6 is
defined as follows:

• A gets UPO.Obf (1λ, C) and oracle access to C, where:

– C ← DCirc(1λ),

– x1 ← D̃X, x2 ← D̃X.

– Sample a bit b $←− {0, 1} uniformly at random, and if b = 0 set Ĉ = C, else if b = 1, sample
y1

$←− Y \ {C(x1)}, y2
$←− Y \ {C(x2)} and set,

– Ĉ ← Programcanonical(C, (x1, x2), (y1, y2)).

• After the splitting experiment, B receives x1 and oracle access to C \ {x1}, and C receives x2 and oracle access
to C \ {x2}.

• (B, C) output (yB , yC).

The output of the hybrid is Ĉ, x1, x2, yB , yC . Denote the probability that (yB , yC) = (Ĉ(x1), Ĉ(x2)) to be p6.
The only difference between H5 and H6 is that we replace Program with Programcanonical , and since the output circuits
of both Program and Programcanonical have the same functionality by the puncturing correctness (see Definition 3.10),
by the iO security of UPO, the outputs of H5 and H6 must be computationally indistinguishable, and hence,

|p6 − p5| = ϵ6(λ), (9)

for some negligible function ϵ6(·).
Observe that from the (D̃X × D̃X)-generalized UPO security of UPO, p6 is at most 1

2 + negl(λ). In particular, in the
reduction to the generalized UPO, the reduction adversary (RA ,RB ,RC) against the (D̃X × D̃X)-generalized UPO
security of UPO uses the adversary (A , B, C) in H6 in the following way.

1. RA samples C ← DCirc(1λ) and sends C along with the circuits µRB () and µRC () for RB , RC
$←− [2k − 1] where

for any r ∈ [2k − 1], µr(x) outputs the binary representation of ((C̃(x) + r) mod 2k)th element of of {0, 1}k

and for any vector z ∈ {0, 1}k, z̃ denotes the representation of z in Z2k .

2. RA upon receiveing the obfuscated program, runs A on the program while simulating oracle access to C to get a
state (σB,C) and finally outputs σB,C along with the description of C.

3. RB (respectively, RC) on receiving x1 (respectively, x2) as the challenge from the challenger, and state σB
(respectively, σC) from RA , runs B on σB (respectively, C on σC) by simulating oracle access to C \ {x1}
(respectively, C \ {x2}) using C and x1 (respectively, x2).

4. RB (respectively,RC) checks if the output of B (respectively, C) is C(x1) (respectively C(x2)) and if so, outputs
0, else, outputs 1.

Since Ĉ = C in the b = 0 case in H6, the event (yB , yC) = (Ĉ(x1), Ĉ(x2)) in the b = 0 case in H6 corresponds to
the event where RB and RC both output 0 in the unpunctured case of the above generalized UPO-security game for
UPO with adversaries (RA ,RB ,RC), i.e.,

Pr[RB andRC output 0 | Unpunctured] = Pr
[
(yB , yC) = (Ĉ(x1), Ĉ(x2)) | b = 0 in H6

]
. (10)

Next since in the b = 1 case in H6, C(xi) ̸= Ĉ(xi) for both i = 1 and i = 2, the event (yB , yC) = (Ĉ(x1), Ĉ(x2))
in the b = 1 case in H6 implies the event yB ̸= C(x1)∧ yC ̸= C(x2) in the b = 1 case in H6, which in turn corresponds

62

to the event whereRB andRC both output 1 in the punctured case of the the above generalized UPO-security game for
UPO. Hence we conclude that,

Pr[RB andRC output 1 | Punctured] = Pr[yB ̸= C(x1) ∧ yC ̸= C(x2) | b = 1 in H6]

≥ Pr
[
(yB , yC) = (Ĉ(x1), Ĉ(x2)) | b = 1 in H6

]
. (11)

Therefore, we conclude by the (D̃X × D̃X)-generalized UPO-security of UPO, there exists a negligible function
negl(·), such that

1/2 + negl(λ)

≥ Pr[RB andRC output 0 | Unpunctured] + Pr[RB andRC output 1 | Punctured]
2

≥
Pr
[
(yB , yC) = (Ĉ(x1), Ĉ(x2)) | b = 0 in H6

]
+ Pr

[
(yB , yC) = (Ĉ(x1), Ĉ(x2)) | b = 1 in H6

]
2

By (10) and (11).

= p6.

Therefore, by the hybrid arguments (Eqs. (4), (5), (6), (7), (8), and (9)), p0 ≤ 1
2 + ñegl(λ) for some negligible function

ñegl(·).

Combining Theorem 8.9 and Theorem 8.11, we can prove that k-point function families can be copy-protected.

Corollary 8.14. Let k = k(λ) be a polynomial in the security parameter such that k > 1, and let Circk := {CS}S∈(X
[k])

be a set of circuits implementing Funck, the set of all k-point functions on X, i.e., Boolean functions on X that have
exactly k-preimages of 1, where for each S ⊂ X, |S| = k, CS denotes the circuit corresponding to the k-point function
with S as the preimage of 1.

Then any UPO scheme UPO = (Obf , Eval) satisfying (UniformX×UniformX)-generalized UPO security for Circk

with respect to Programcanonical , as well as iO security, is also a copy-protection scheme (CopyProtect , Eval) for Circk

with CopyProtect = UPO.Obf and Eval = UPO.Eval , satisfying oracular-DEvasive
X2,Circk -unpredictable-style anti-piracy,

where DEvasive
X2,Circk is defined as: S, x1, x2 ← DEvasive

X2,Circ (1
λ), where S $←− (X

k) and x1, x2 ← DEvasive
X2 (S), where DEvasive

X2

is as defined in Definition 8.7.

Proof of Corollary 8.14. The correctness of (CopyProtect , Eval), where recall CopyProtect = UPO.Obf and Eval =
UPO.Eval , immediately follows from the correctness of UPO.

Next, we prove oracular-DEvasive
X2,Circk -unpredictable-style CP anti-piracy of (CopyProtect , Eval) for Circk.

Let iO be a post-quantum iO scheme, and consider the circuit class iO(Circk), where each key is viewed as (S, r)
where S ∈ (X

k) is an index for of a cicruit in Circk and r is a string of size that of the randomness needed to run iO
compiler. Let D̃Circk be a distribution on iO(Circk) and Program be a programming algorithm for iO(Circk), defined
as follows:

• D̃Circk outputs S, r where S $←− (X
k), and r $←− {0, 1}w where w is the length of the randomness required to run

the iO compiler.

• ˜Program is defined as follows: on input ((C, r), (x1, . . . , xℓ), (µ1, . . . , µℓ)), where µ1, . . . , µℓ are programming
circuits for the punctured points, ˜Program computes yi ← µi(xi) for every i ∈ [ℓ], and outputs Ĉ ←
Program(C, (x1, . . . , xℓ), (y1, . . . , yℓ)).

– If x′ = xi for any i ∈ [ℓ], output yi,
– Else, output C(x′).

63

By Theorem 8.9 since k ≥ 2, we conclude that iO(Circk)with respect to Program is (D̃Evasive
X2 , UniformX,Dhalf-correct

Y , D̃Circk)-

Progmaskable circuit class whereDhalf-correct
Y is the half-correct distribution (see Definition 8.5), and D̃Evasive

X2(S, r) :=
DEvasive

X2 (S) where DEvasive
X2 is as defined in Definition 8.7. Therefore, by Theorem 8.11, we conclude that

(CopyProtect , Eval) satisfies 1/2-oracular -D̃Evasive
X2,Circk -unpredictable-style-CP antipiracy for iO(Circ), where

D̃Evasive
X2,Circk first samples S, r ← D̃Evasive

Circk (1λ) and then samples x1, x2 ← D̃Evasive
X2(S, r), i.e., x1, x2 ←

DEvasive
X2 (S).

However, by the iO-security of UPO, we can move to a hybrid where in the oracular-copy-protection anti-piracy
game, the challenger after sampling (S, r) ← D̃Evasive

Circk (1λ), instead of running CopyProtect on iO(CS; r), runs
CopyProtect on CS after sufficient padding to match the circuit size of iO(CS; r); and the winning condition remains
the same. Clearly, by the iO security of UPO, the output of the copy-protection adversary, even in the presence of the
correct output values at the challenge points, must be computationally indistinguishable from that of the real game, and
hence the winning probability of the adversary in this hybrid is at most 1

2 up to negligible factors. However, note that
the hybrid game is the same as the oracular-DEvasive

X2,Circk -unpredictability-style-CP anti-piracy game of (CopyProtect , Eval)

for Circk. Hence, (CopyProtect , Eval) satisfies oracular-DEvasive
X2,Circk -unpredictability-style-CP anti-piracy for Circ.

Combining Corollary 8.14 with the “Moreover” part of Theorem 5.1, we immediately get Corollary 8.15.

Corollary 8.15. Let X = {0, 1}n where n = n(λ) is a polynomial in λ, and let k = k(λ) be a polynomial in the
security parameter such that k > 1. Let Circk := {CS}S∈(X

[k])
be a set of circuits implementing Funck, the set of all

k-point functions on X where for each S ⊂ X, |S| = k, CS denotes the circuit corresponding to the k-point function with
S as the preimage of 1.

Then, assuming the existence of polynomially secure iO and the OWFs, there exists a copy-protection scheme
for Circk that satisfies oracular-DEvasive

X2,Circk -unpredictable-style-CP anti-piracy (see Definition 3.1), where DEvasive
X2,Circk is

defined as: S, x1, x2 ← DEvasive
X2,Circ (1

λ), where S $←− (X
k) and x1, x2 ← DEvasive

X2 (S), where DEvasive
X2 is as defined in

Definition 8.7.

8.3 Relation between Progmaskable and Puncturable Circuits
First, we note the following property of 1-point pseudorandomness style puncturable secure circuit class.

Lemma 8.16. For any circuit class Circ that satisfies 1-point m-bit (DX,DCirc)-pseudorandomness style puncturing
security (with respect to Puncture), the following holds:

{Ĉ, x, C(x)}Ĉ←Puncture(C,x),x←DX,C←DCirc(1λ) ≈c {Ĉ, x, Y}
Puncture(C,x),x←DX,Y

$←−Y\{C(x)}
. (12)

Proof of Lemma 8.16. Let the ensembles in the LHS and the RHS of (12) be D0 and D1, respectively. Moreover, let
D2 be the ensemble

{Ĉ, x, Y}
Puncture(C,x),x←DX,Y

$←−Y
.

Hence, for any given distinguisher A , we get

64

(
1− 1

2m

) ∣∣∣∣∣ Pr
{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]− Pr
{Ĉ,x,y}←D1

[A(Ĉ, x, y) = 1]

∣∣∣∣∣
=

∣∣∣∣∣
(

1− 1
2m

)
Pr

{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]−
(

1− 1
2m

)
Pr

{Ĉ,x,y}←D1

[A(Ĉ, x, y) = 1]

∣∣∣∣∣
≤
∣∣∣∣∣
(

1− 1
2m

)
Pr

{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1] +
1

2m Pr
{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]

−
((

1− 1
2m

)
Pr

{Ĉ,x,y}←D1

[A(Ĉ, x, y) = 1] +
1

2m Pr
{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]

)∣∣∣∣∣
=

∣∣∣∣∣ Pr
{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]

−
((

1− 1
2m

)
Pr

{Ĉ,x,y}←D1

[A(Ĉ, x, y) = 1] +
1

2m Pr
{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]

)∣∣∣∣∣
=

∣∣∣∣∣ Pr
{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]− Pr
{Ĉ,x,y}←D2

[A(Ĉ, x, y) = 1]

∣∣∣∣∣
≤ negl(λ),

for some negligible function negl(·), where the last equality follows from the above-mentioned formulation of D2,
and the last inequality follows from 1-point m-bit (DX,DCirc)-pseudorandomness style puncturing security of Circ.
Therefore, we conclude that,

| Pr
{Ĉ,x,y}←D0

[A(Ĉ, x, y) = 1]− Pr
{Ĉ,x,y}←D1

[A(Ĉ, x, y) = 1]| ≤ negl(λ)
1− 1

2m

≤ 2 · negl(λ),

which is also negligible in the security parameter λ. Hence, we conclude that D1 ≈c D0.

Using Lemma 8.16 we can prove the following theorem for 1-point pseudorandomness-style puncturable circuits.

Theorem 8.17 (Different string pseudorandomness from 1-point pseudorandomness-style puncturable circuits).
Let iO be a post-quantum iO scheme, and let ℓ := ℓ(λ) be a polynomial in the security parameter, λ. Then, for any
circuit class Circ that satisfies 1-point m-bit (DX,DCirc)-pseudorandomness style puncturing security (with respect to
Puncture), and up to sufficient padding of the punctured circuit before running the iO compiler, the following holds:

{ ˜̂C, (x1, . . . , xℓ), (C(x1), . . . , C(xℓ))} ˜̂C←iO(Ĉ),Ĉ←Puncture(C,(x1,...,xℓ)),
x1←DX,...xℓ←DX,C←DCirc(1λ)

≈c { ˜̂C, (x1, . . . , xℓ), (Y1, . . . , Yℓ))} ˜̂C←iO(Ĉ),Ĉ←Puncture(C,(x1,...,xℓ)),

Y1
$←−Y\{C(x1)},...Yℓ

$←−Y\{C(xℓ)},
x1←DX,...xℓ←DX,C←DCirc(1λ)

. (13)

Proof of Theorem 8.17. We consider ℓ+ 1-hybrids, H0, H1, . . . , Hℓ, where for every i ∈ {0, 1, 2, . . . , ℓ}, Hi outputs
the ensemble:

{ ˜̂C, (x1, . . . , xℓ), (C(x1), . . . , C(xℓ−i), Yℓ−i+1, . . . , Yℓ)},

where ˜̂C ← iO(Ĉ), Ĉ ← Puncture(C, (x1, . . . , xℓ)), Yj
$←− Y \ {C(xj)}, ∀ℓ− i < j ≤ ℓ,

65

xi ← DX, ∀i ∈ [ℓ], C ← DCirc(1λ).

upto sufficient padding of the punctured circuit before running the iO compiler on it. Since the outputs of H0 and Hℓ are
the same as LHS and RHS, respectively, of (13), it is enough to show that for every i ∈ {0, 1, . . . , ℓ− 1}, the outputs of
Hi and Hi+1 are computationally indistinguishable.

To do that, fix an i ∈ {0, 1, . . . , ℓ− 1}. We consider the following hybrids:
H0

i : This is the same as Hi.
H1

i : In this hybrid, we compute the obfuscated circuit differently, i.e., the hybrid outputs

{ ˜̂C, (x1, . . . , xℓ), (Y1, . . . , Yℓ)},

where as before,
Yj ← C(xj), ∀1 ≤ j ≤ ℓ− i, Yj

$←− Y \ {C(xj)}, ∀ℓ− i + 1 ≤ j ≤ ℓ,

xi ← DX, ∀i ∈ [ℓ], C ← DCirc(1λ), but ˜̂C ← iO(Ĉ),

where Ĉ is the circuit that has Ĉxℓ−i hardcoded in it where Ĉxℓ−i ← Puncture(C, xℓ−i), such that on every x ∈
{x1, . . . , xℓ}, Ĉ outputs ⊥ and on every x ∈ X \ {x1, . . . , xℓ} Ĉ outputs Ĉxℓ−i (x).

Note that across hybrids, H0
i and H1

i , we did not change the functionality of Ĉ, hence by the iO security of iO, the
outputs of H0

i and H1
i must be computationally indistinguishable.

H2
i : In this hybrid, we change the distribtution on Yℓ−i, i.e., the hybrid outputs

{ ˜̂C, (x1, . . . , xℓ), (Y1, . . . , Yℓ)},

where
Yj ← C(xj), ∀1 ≤ j ≤ ℓ− i− 1, Yj

$←− Y \ {C(xj)}, ∀ℓ− i ≤ j ≤ ℓ,

xi ← DX, ∀i ∈ [ℓ], C ← DCirc(1λ), and ˜̂C ← iO(Ĉ),

where Ĉ is the circuit that has Ĉxℓ−i hardcoded in it where Ĉxℓ−i ← Puncture(C, xℓ−i), such that on every x ∈
{x1, . . . , xℓ}, Ĉ outputs ⊥ and on every x ∈ X \ {x1, . . . , xℓ} Ĉ outputs Ĉxℓ−i (x).

Since Circ satisfies 1-point m-bit (DX,DCirc)-pseudorandomness style puncturing security (with respect to
Puncture), by Lemma 8.16, the outputs of H1

i and H2
i must be computationally indistinguishable. This is because, given

any distinguisher A that distinguishes between the outputs of H1
i and H2

i , we can construct the following distinguisher
B that distinguishes between the LHS and RHS distributions in Lemma 8.16 (respectively, denoted as D0 and D1),
with the same distinguishing advantage as A , as follows. Given a sample Ĉx′ , x′, Y′, B samples xj ← DX for every

j ∈ [ℓ] \ {ℓ− i} in an IID fashion, and set xℓ−i := x′. Then B generates ˜̂C ← iO(Ĉ) where Ĉ is the circuit that has Ĉx′

hardcoded in it, such that on every x ∈ {x1, . . . , xℓ}, Ĉ outputs ⊥ and on every x ∈ X \ {x1, . . . , xℓ} Ĉ outputs Ĉx′ (x).
Next, for every 1 ≤ j < ℓ− i, B samples Yj ← C(xj), and for every ℓ− i < j ≤ ℓ, samples Yj

$←− Y \ {C(xj), and sets

Yℓ−i := Y′. Finally B runs A on ˜̂C, (x1, . . . , xℓ), (Y1, . . . , Yℓ), and outputs the outcome. Clearly, if Ĉx′ , x′, Y′ ← D0,
then the input of A has the same distribution as H1

i and if Ĉx′ , x′, Y′ ← D1, then the input of A has the same distribution
as H2

i . Hence, B has the same advantage in distinguishing D0 and D1, as A has in distinguishing the outputs of H1
i and

H2
i .

H3
i : In this hybrid, we compute the obfuscated circuit differently, i.e., the hybrid outputs

{ ˜̂C, (x1, . . . , xℓ), (Y1, . . . , Yℓ)},

where

Yj ← C(xj}, ∀1 ≤ j ≤ ℓ− i− 1, Yj
$←− Y \ {C(xj)}, ∀ℓ− i ≤ j ≤ ℓ, xi ← DX, ∀i ∈ [ℓ],

66

and C ← DCirc(1λ), but ˜̂C ← iO(Ĉ) where Ĉ ← Puncture(C, (x1, . . . , xℓ)). Note that across hybrids, H2
i and

H3
i , we did not change the functionality of Ĉ, hence by the iO security of iO, the outputs of H2

i and H3
i must be

computationally indistinguishable.
However, note that H3

i is the same as Hi+1. Therefore, by hybrid, arguments we conclude that the outputs of Hi and
Hi+1 are computationally indistinguishable. Since i ∈ {0, 1, . . . , ℓ− 1} was arbitrary we conclude that the same holds
for every i ∈ {0, 1, . . . , ℓ− 1}, which completes the proof.

Next, we show that 1-point pseudorandomness-style puncturing secure circuit classes are Progmaskable.

Theorem 8.18. Let iO be a post-quantum iO scheme, and let ℓ := ℓ(λ) be a polynomial in the security parameter λ.
Then, for any circuit class Circ that satisfies 1-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security
(with respect to Puncture) (see Definition 7.1), then iO(Circ) satisfies ℓ-points ((DX)

ℓ,DX,Dhalf-correct
Y , D̃Circ)-

Progmaskability security with respect to an efficient algorithm Program, where:

• Dhalf-correct
Y : half-correct distribution (see Definition 8.5),

• D̃Circ outputs C, r where C ← DCirc(1λ), and r $←− {0, 1}w where w is the length of the randomness required to
run the iO compiler.

• Program is defined as follows: on input ((C, r), (x1, . . . , xℓ), (y1, . . . , yℓ)), it outputs Ĉ. Here, Ĉ = iO(1λ, C′; r)
and C′(x′) is defined as follows:

– If x′ = xi for some i ∈ [ℓ], output yi,
– Else, output Cx1,...,xℓ(x′), where Cx1,...,xℓ ← Puncture(C, (x1, . . . , xℓ)).

Proof of Theorem 8.18. We describe the hybrids below.

H0: this corresponds to D0 in Definition 8.4. That is, this hybrid outputs (Ĉ, x1, . . . , xℓ)← D0, where xi ← DX for
every i ∈ [ℓ] and Ĉ = iO(C; r), C ← DCirc(1λ) and r $←− {0, 1}w where w is the length of the randomness required
to run the iO compiler, i.e., Ĉ ← iO(C).

H1: outputs (Ĉ, x1, . . . , xℓ), where as before, xi ← DX for every i ∈ [ℓ], but Ĉ ← iO(1λ, C′; r) where C′ is defined
as follows: Sample C ← DCirc(1λ) and r $←− {0, 1}w where w is the length of the randomness required to run the iO
compiler and then C′(x′) is defined as follows:

• If x′ = xi for some i ∈ [ℓ], output C(xi),

• Else, output Cx1,...,xℓ(x′), where Cx1,...,xℓ ← Puncture(C, (x1, . . . , xℓ)).

By iO security of iO, H0 and H1 are computationally indistinguishable.

H2: Let X be a uniform boolean random variable, i.e., X = 0 with probability 1
2 , and X = 1 with probability 1

2 .
Sample X and if X = 0, output (Ĉ, x1, . . . , xℓ) ← H1. Else, output (Ĉ, x1, . . . , xℓ) generated as follows: generate
Ĉ ← iO(1λ, C′), where r $←− {0, 1}w where w is the length of the randomness required to run the iO compiler and C′

is defined as follows: Sample C ← DCirc(1λ) and y1
$←− Y \ {C(x1)}, . . . , yℓ

$←− Y \ {C(xℓ)}, and then C′(x′) is
defined as follows:

• If x′ = xi for some i ∈ [ℓ], output yi,

• Else, output Cx1,...,xℓ(x′), where Cx1,...,xℓ ← Puncture(C, (x1, . . . , xℓ)).

67

H2 is a union of two events X = 0 and X = 1. Conditioned on X = 0, H2 is the same as H1, and conditioned on
X = 1, it is the same as H1 except that we changed the distribution of y1, y2, . . . , yℓ to y1

$←− Y \ {C(x1)}, . . . , yℓ
$←−

Y \ {C(xℓ)}. However, the change is indistinguishable by the (DX,DCirc)-puncturing security of Circ. Hence, by
puncturing security, the outputs of H1 and H2 are computationally indistinguishable by Theorem 8.17 since Circ
satisifes 1-point m-bit (DX,DCirc)-pseudorandomness style puncturing security with respect to Puncture and iO is a
post-quantum iO.

Note that the only difference between the X = 0 and X = 1 cases in H2 is that we changed the programmed value
of C′ at x1, . . . , xℓ. Therefore, H2 can be rewritten as follows.
H3: Output (Ĉ, x1, . . . , xℓ) generated as follows: generate Ĉ ← iO(1λ, C′), where C′ is defined as follows: Sample
C ← DCirc(1λ) and y1

$←− Y \ {C(x1)}, . . . , yℓ
$←− Y \ {C(xℓ)}. Let X be a uniform boolean random variable, i.e.,

X = 0 with probability 1
2 , and X = 1 with probability 1

2 . Sample X and if X = 0, for any input x′, C′(x′) is defined as
follows:

• If x′ = xi for some i ∈ [ℓ], output C(xi),

• Else, output Cx1,...,xℓ(x′), where Cx1,...,xℓ ← Puncture(C, (x1, . . . , xℓ)).

and if X = 1, C′(x′) is defined as follows:

• If x′ = xi for some i ∈ [ℓ], output yi,

• Else, output Cx1,...,xℓ(x′), where Cx1,...,xℓ ← Puncture(C, (x1, . . . , xℓ)).

Clearly, the outputs of H2 and H3 are identically distributed.
H4: this corresponds to D1 in Definition 8.4 where D̃X = DX. In other words, H4 outputs (Ĉ, x1, . . . , xℓ)← D1.

The outputs of hybrids H3 and H4 are identically distributed because the distribution of the programmed values at the
points of puncture {xi}i∈[ℓ] in H3 is the same as the half-correct distribution (see Definition 8.5).

Combining Theorem 8.18 with Theorem 8.11, we get the following corollary.

Corollary 8.19 (Unpredictable copy-protection for pseudorandomness-style puncturable secure circuit class
from UPO). Let (Circ, Puncture) be a circuit class satisfying 1-point 1-bit (DX,DCirc)-pseudorandomness style
puncturing security. Then assuming post quantum iO exists, any UPO scheme UPO = (Obf , Eval) satisfying
(DX ×DX)-generalized UPO security for Circ with respect to Programcanonical as well as iO security is also a copy-
protection scheme (CopyProtect , Eval) for Circ with CopyProtect(·) = UPO.Obf ? and Eval = UPO.Eval , satisfying
oracular-(DX ×DX ×DCirc)-unpredictable-style-CP anti-piracy.

Proof of Corollary 8.19. The correctness of (CopyProtect , Eval), where recall CopyProtect = UPO.Obf and Eval =
UPO.Eval , immediately follows from the correctness of UPO.

Next, we prove oracular-(DX ×DX ×DCirc)-unpredictable-style CP anti-piracy of (CopyProtect , Eval) for Circ.
Let iO be a post-quantum iO scheme, and consider the circuit class iO(Circ), where each key is viewed as (C, r)

for some circuit key/description C of a cicruit in Circ and r is a string of size that of the randomness needed to run
iO compiler. Let D̃Circ be a distribution on Circ and Program be a programming algorithm for iO(Circ), defined as
follows:

• D̃Circ outputs C, r where C ← DCirc(1λ), and r $←− {0, 1}w where w is the length of the randomness required to
run the iO compiler.

• ˜Program is defined as follows: on input ((C, r), (x1, . . . , xℓ), (µ1, . . . , µℓ)), where µ1, . . . , µℓ are programming
circuits for the punctured points, ˜Program computes yi ← µi(xi) for every i ∈ [ℓ], and outputs Ĉ ←
Program(C, (x1, . . . , xℓ), (y1, . . . , yℓ)).

68

– If x′ = xi for some i ∈ [ℓ], output yi,
– Else, output C(x′).

By Theorem 8.18, we conclude that iO(Circ)with respect to Program is a 2-points 1-bit ((DX×DX,DX,Dhalf-correct
Y , D̃Circ)-

Progmaskable circuit class where Dhalf-correct
Y is the half-correct distribution (see Definition 8.5). Therefore, by

Theorem 8.11, we conclude that (CopyProtect , Eval) satisfies 1/2-oracular -(DX ×DX, D̃Circ)-unpredictable-style-CP
antipiracy for iO(Circ). However, by the iO-security of UPO, we can move to a hybrid where in the oracular-copy-
protection anti-piracy game, the challenger after sampling (C, r)← D̃Circ, instead of running CopyProtect on iO(C; r),
runs CopyProtect on C after sufficient padding to match the circuit size of iO(C; r); the winning condition remains the
same. Clearly, by the iO security of UPO, the output of the copy-protection adversary, even in the presence of the correct
output values at the challenge points, must be computationally indistinguishable from that of the real game, and hence
the winning probability of the adversary in this hybrid is at most 1

2 up to negligible factors. However, note that the hybrid
game is the same as the oracular-(DX ×DX ×DCirc)-unpredictability-style-CP anti-piracy game of (CopyProtect , Eval)
for Circ. Hence, (CopyProtect , Eval) satisfies oracular-(DX ×DX ×DCirc)-unpredictability-style-CP anti-piracy for
Circ.

By combining Corollary 8.19 with Theorems 3.17 and 5.1, we immediately get the following corollary.
Corollary 8.20 (Unpredictable copy-protection for pseudorandomness style puncturable secure circuit class). Let
(Circ, Puncture) be a circuit class satisfying 1-point 1-bit (DX,DCirc)-pseudorandomness style puncturing security
(see Definition 7.1). Then, assuming the existence of polynomially secure iO and the LWE assumption, then there exists
a copy-protection scheme for Circ that satisfies (DX ×DX ×DCirc)-oracular-unpredictable-style-CP anti-piracy (see
Definition 3.1). Moreover, if DX = UniformX, then we can replace the LWE assumption with the existence of OWFs.

9 Summary of Results
To summarize, we get the following feasibility results for various kinds of copy-protection. Let X = {0, 1}n(λ) or in
short X = {0, 1}n be the input space.

1. Corollary 7.7: Assuming the existence of polynomially secure iO and the LWE assumption, for any puncturable
circuit class (Circ, Puncture) satisfying 2-point m-bit (DX,DCirc)-pseudorandomness-style puncturing security
(Definition 7.1), there exists a copy-protection scheme that satisfies (DCirc×DX×DX)-oracular-pseudorandomness-
style CP+ anti-piracy (Definition 3.4). Moreover, if DX = UniformX, then we can replace the LWE assumption
with the existence of OWFs.

2. Corollary 8.2: Assuming the existence of polynomially secure iO and the LWE assumption, for any puncturable
circuit class (Circ, Puncture) satisfying 2-point m-bit (DX,DCirc)-unpredictability-style puncturing security (see
Definition 7.1), there exists a copy-protection scheme that satisfies (DCirc ×DX ×DX)-unpredictability-style
CP anti-piracy (see Definition 3.1). Moreover, if DX = UniformX, then we can replace the LWE assumption with
the existence of OWFs.

3. Corollary 8.15: For k ≥ 2, assuming the existence of polynomially secure iO and the OWFs, there exists a
copy-protection scheme for Circk, a circuit implementation of set of all k-point functionalities, that satisfies
oracular-DEvasive

X2,Circk -unpredictable-style anti-piracy (see Definition 3.1), where DEvasive
X2,Circk is defined as: S, x1, x2 ←

DEvasive
X2,Circ (1

λ), where S $←− (X
k) and x1, x2 ← DEvasive

X2 (S), where each S ∈ (X
k) is an index for a circuit in Circk,

and DEvasive
X2 is as defined in Definition 8.7.

4. Corollary 8.20: Assuming the existence of polynomially secure iO and the LWE assumption, then for any circuit
class (Circ, Puncture) satisfying 1-point 1-bit (DX,DCirc)-pseudorandomness style puncturing security (see
Definition 7.1), there exists a copy-protection scheme that satisfies (DX ×DX ×DCirc)-oracular-unpredictable-
style-CP anti-piracy (see Definition 3.1). Moreover, ifDX = UniformX, then we can replace the LWE assumption
with the existence of OWFs.

69

Acknowledgments
Prabhanjan Ananth is supported by the National Science Foundation under the grants FET-2329938, CAREER-2341004
and, FET-2530160. Amit Behera was partially funded by the Israel Science Foundation (grant No. 2527/24) and the
European Union (ERC-2022-COG, ACQUA, 101087742). Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority can be held responsible for them.

References
[Aar09a] Scott Aaronson. Quantum copy-protection and quantum money. In Proceedings of the 24th Annual IEEE

Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 229–242.
IEEE Computer Society, 2009. (Cited on page 3.)

[Aar09b] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual IEEE Conference
on Computational Complexity, pages 229–242. IEEE, 2009. (Cited on page 5.)

[AB24] Prabhanjan Ananth and Amit Behera. A modular approach to unclonable cryptography. In Leonid Reyzin
and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 3–37. Springer,
Cham, August 2024. (Cited on page 3, 4, 5, 6, 11, 12, 13, 22, 23, 24, 42, 43, 52.)

[ABH25] Prabhanjan Ananth, Amit Behera, and Zikuan Huang. Copy-protection from UPO, revisited. Cryptology
ePrint Archive, Paper 2025/1207, 2025. (Cited on page 1.)

[AC02] Mark Adcock and Richard Cleve. A quantum goldreich-levin theorem with cryptographic applications. In
Helmut Alt and Afonso Ferreira, editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects
of Computer Science, Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings, volume 2285 of
Lecture Notes in Computer Science, pages 323–334. Springer, 2002. (Cited on page 16.)

[AK22] Prabhanjan Ananth and Fatih Kaleoglu. A note on copy-protection from random oracles. arXiv preprint
arXiv:2208.12884, 2022. (Cited on page 3.)

[AKL+22] Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry. On the feasibility of
unclonable encryption, and more. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 212–241. Springer, Cham, August 2022. (Cited on page 3, 5, 7, 26.)

[AKL23] Prabhanjan Ananth, Fatih Kaleoglu, and Qipeng Liu. Cloning games: A general framework for unclonable
primitives. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085
of LNCS, pages 66–98. Springer, Cham, August 2023. (Cited on page 3, 5, 16.)

[AKY25] Prabhanjan Ananth, Fatih Kaleoglu, and Henry Yuen. Simultaneous haar indistinguishability with
applications to unclonable cryptography. In ITCS 2025, 2025. (Cited on page 16, 17.)

[ALL+21a] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches for quantum
copy-protection. In Annual International Cryptology Conference, pages 526–555. Springer, 2021. (Cited
on page 3.)

[ALL+21b] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches for quantum
copy-protection. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS,
pages 526–555, Virtual Event, August 2021. Springer, Cham. (Cited on page 3, 7.)

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: Attacks and fixes
for noisy linear FE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 110–140. Springer, Cham, May 2020. (Cited on page 15.)

70

[AP21] Prabhanjan Ananth and Rolando L La Placa. Secure software leasing. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 501–530. Springer, 2021. (Cited on
page 3.)

[BBBV97a] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of
quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997. (Cited on page 14.)

[BBBV97b] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths and weaknesses
of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997. (Cited on page 12, 13.)

[BBV24] James Bartusek, Zvika Brakerski, and Vinod Vaikuntanathan. Quantum state obfuscation from classical
oracles. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages 1009–1017,
2024. (Cited on page 4.)

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Berlin, Heidelberg, February 2014. (Cited on
page 26, 56.)

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homomorphic
encryption schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 79–109. Springer, Cham, May 2020. (Cited on page 15.)

[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are not
necessary for IO: Circular-secure LWE suffices. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, ICALP 2022, volume 229 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl, July 2022.
(Cited on page 15.)

[BDJ+24] Pedro Branco, Nico Döttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, Spencer Peters, and
Vinod Vaikuntanathan. Pseudorandom obfuscation and applications. Cryptology ePrint Archive, Paper
2024/1742, 2024. (Cited on page 15.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6:1–6:48, 2012.
(Cited on page 15.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Berlin, Heidelberg,
March 2014. (Cited on page 16.)

[BGK+24] James Bartusek, Vipul Goyal, Dakshita Khurana, Giulio Malavolta, Justin Raizes, and Bhaskar Roberts.
Software with certified deletion. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 85–111. Springer, 2024. (Cited on page 3.)

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: Provable security against
zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of
LNCS, pages 544–574. Springer, Cham, November 2018. (Cited on page 15.)

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos - trapdoor permutations
from indistinguishability obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 474–502. Springer, Berlin, Heidelberg, January 2016. (Cited on page 16, 31,
39, 55.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Berlin, Heidelberg, December 2013. (Cited on page 4, 16.)

71

[ÇG24a] Alper Çakan and Vipul Goyal. Unclonable cryptography with unbounded collusions and impossibility of
hyperefficient shadow tomography. In TCC, 2024. (Cited on page 3.)

[CG24b] Andrea Coladangelo and Sam Gunn. How to use quantum indistinguishability obfuscation. In Bojan
Mohar, Igor Shinkar, and Ryan O’Donnell, editors, 56th ACM STOC, pages 1003–1008. ACM Press, June
2024. (Cited on page 3, 4, 42, 43.)

[ÇG25a] Alper Çakan and Vipul Goyal. How to copy-protect all puncturable functionalities without conjectures: A
unified solution to quantum protection. Cryptology ePrint Archive, Paper 2025/1197, 2025. (Cited on
page 14.)

[ÇG25b] Alper Çakan and Vipul Goyal. How to copy-protect malleable-puncturable cryptographic functionalities
under arbitrary challenge distributions. Cryptology ePrint Archive, Paper 2025/1357, 2025. (Cited on
page 14.)

[CHV23] Céline Chevalier, Paul Hermouet, and Quoc-Huy Vu. Semi-quantum copy-protection and more. Cryptology
ePrint Archive, Report 2023/244, 2023. (Cited on page 3, 5.)

[CHVW19] Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Matrix PRFs: Constructions, attacks,
and applications to obfuscation. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 55–80. Springer, Cham, December 2019. (Cited on page 15.)

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and applications to
unclonable cryptography. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 556–584, Virtual Event, August 2021. Springer, Cham. (Cited on page 3, 4, 7, 16, 19, 26,
27, 28, 30, 42.)

[CLW25] Valerio Cini, Russell W. F. Lai, and Ivy K. Y. Woo. Lattice-based obfuscation from NTRU and equivocal
LWE. Cryptology ePrint Archive, Paper 2025/1129, 2025. (Cited on page 15.)

[CMP20a] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model. arXiv (CoRR), abs/2009.13865, 2020.
(Cited on page 3, 5.)

[CMP20b] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model. arXiv preprint arXiv:2009.13865, 2020.
(Cited on page 3.)

[CV22] Eric Culf and Thomas Vidick. A monogamy-of-entanglement game for subspace coset states. Quantum,
6:791, sep 2022. (Cited on page 7, 27, 28.)

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Succinct LWE
sampling, random polynomials, and obfuscation. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part II, volume 13043 of LNCS, pages 256–287. Springer, Cham, November 2021. (Cited on page 15.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, 1986. (Cited on page 16.)

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st ACM
STOC, pages 25–32. ACM Press, May 1989. (Cited on page 74.)

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Samir Khuller
and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages 736–749. ACM Press, June 2021.
(Cited on page 15.)

[HJL25] Yao-Ching Hsieh, Aayush Jain, and Huijia Lin. Lattice-based post-quantum iO from circular security with
random opening assumption (part II: zeroizing attacks against private-coin evasive LWE assumptions).
Cryptology ePrint Archive, Paper 2025/390, 2025. (Cited on page 15.)

72

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013. (Cited on page 16.)

[KY25a] Fuyuki Kitagawa and Takashi Yamakawa. Copy protecting cryptographic functionalities over entropic
inputs. Cryptology ePrint Archive, Paper 2025/1264, 2025. (Cited on page 1.)

[KY25b] Fuyuki Kitagawa and Takashi Yamakawa. Foundations of single-decryptor encryption. Cryptology ePrint
Archive, Paper 2025/1219, 2025. (Cited on page 5, 7, 9, 10, 17, 19, 20, 23, 24, 27, 42.)

[LLQZ22] Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry. Collusion resistant copy-protection for
watermarkable functionalities. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume
13747 of LNCS, pages 294–323. Springer, Cham, November 2022. (Cited on page 3.)

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM Journal on
Computing, 40(6):1803–1844, 2011. (Cited on page 16.)

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages
127–156. Springer, Cham, October 2021. (Cited on page 15.)

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 408–438. Springer, Cham, May
2019. (Cited on page 30, 31.)

A Proof of Theorem 6.2
Here, we prove Theorem 6.2.

Proof of Theorem 6.2. It suffices to construct a scheme for single-bit messages since we can expand the message space
by a simple bit-by-bit encryption (under independent keys for each bit). Let FGen be a generation algorithm for a keyed
injective one-way function. Then we construct a key-robust non-committing encryption scheme with the message space
{0, 1} and key space {0, 1}ℓinp as follows.

Gen(1λ): On input 1λ, generate F← FGen(1λ) and x ← {0, 1}ℓinp , and output k := (F, x).

Enc(k, m): On input (F, x) and m ∈ {0, 1}, sample x′ ← {0, 1}ℓinp and r0, r1 ← {0, 1}ℓinp , sets

ctm := (F(x), rm, ⟨rm, x⟩)

and
ctm⊕1 := (F(x′), rm⊕1, ⟨rm⊕1, x′⟩ ⊕ 1),

and output ct := (F, ct0, ct1).

Dec(k, ct): On input k and ct = (F, ct0, ct1), if the first component of k disagrees with F, output ⊥. Otherwise,
parse k = (F, x) and ctb = (yb, rb, βb) for b ∈ {0, 1}. If there is unique b ∈ {0, 1} such that yb = F(x) and
βb = ⟨rb, x⟩, then output b, and output ⊥ otherwise.

Fake(1λ): On input 1λ, generate F← FGen(1λ), sample x0, x1 ← {0, 1}ℓinp and r0, r1 ← {0, 1}ℓinp , sets

ct∗b := (F(xb), rb, ⟨rb, xb⟩)

for b ∈ {0, 1}, and output ct∗ := (F, ct∗0 , ct∗1) and st := (F, x0, x1).

Open(st, m): On input st and m ∈ {0, 1}, parse st = (F, x0, x1) and output k∗ := (F, xm).

73

Correctness and key-robustness are clear from the injectivity of FGen. Below, we show the non-committing property.
Fix m ∈ {0, 1} and consider the following hybrids of distributions.

D0: This corresponds to the distribution in the LHS of the non-committing property. That is, it samples as follows:
Generate F← FGen(1λ), sample x, x′ ← {0, 1}ℓinp , and r0, r1 ← {0, 1}ℓinp , set ctm := (F(x), rm, ⟨rm, x⟩) and
ctm⊕1 := (F(x′), rm⊕1, ⟨rm⊕1, x′⟩ ⊕ 1), and output (ct = (F, ct0, ct1), k = (F, x)).

D1: This is identical to D0 except that ctm⊕1 is generated as ctm⊕1 := (F(x′), rm⊕1, ⟨rm⊕1, x′⟩), By the one-wayness
of FGen and the Goldreich-Levin theorem [GL89], D1

c≈ D2.

D2: This corresponds to the distribution in the LHS of the non-committing property. That is, it samples as follows:
Generate F ← FGen(1λ), sample x0, x1 ← {0, 1}ℓinp , and r0, r1 ← {0, 1}ℓinp , set ctb := (F(xb), rb, ⟨rb, xb⟩)
for b ∈ {0, 1}, and output (ct = (ct0, ct1), k = (F, xm)).
It is easy to verify that D1 and D2 are identical: D1 ≡ D2.

Combining above, D0
c≈ D2, and thus the non-committing property is proven.

74

	Introduction
	Our Results in a Nutshell
	Technical Overview

	Preliminaries
	Quantum Query Lower Bound
	Min-Entropy, Universal Hash Functions, and Leftover Hash Lemma
	Classical Cryptographic Primitives
	Quantum Goldreich-Levin
	Useful Lemma

	Definitions
	Definition of Copy-Protection
	Definitions of Unclonable Puncturable Obfuscation

	Strong Monogamy Property of Coset States with Auxiliary Inputs
	Proof of Theorem 16

	Construction of UPO
	Construction
	Proof of Security

	Alternative Proof of Security for Uniform Inputs
	Oracular Pseudorandomness-Style Copy-Protection
	Puncturable Secure Circuits
	Oracular Pseudorandomness-Style Copy-Protection for Pseudorandomness-Style Puncturable-Secure Circuits

	Oracular Unpredictability-Style Copy-Protection
	Progmaskable circuit classes
	Oracular Unpredictability-Style Copy-Protection for Progmaskable Circuits
	Relation between Progmaskable and Puncturable Circuits

	Summary of Results
	Proof of Theorem 18

