Copy-Protection from Unclonable Puncturable Obfuscation,
Revisited *

Prabhanjan Ananth!, Amit Behera?, Zikuan Huang3, Fuyuki Kitagawa4’5, Takashi
Yamakawa*”

1University of California, Santa Barbara
prabhanjan @cs.ucsb.edu
2NTT Research
amitbeheral 767 @ gmail.com
3Tsinghua University

hzk21 @mails.tsinghua.edu.cn

4NTT Social Informatics Laboratories

{fuyuki.kitagawa,takashi.yamakawa} @ntt.com

NTT Research Center for Theoretical Quantum Information

October 8, 2025

Abstract

Quantum copy-protection is a functionality-preserving compiler that transforms a classical program into an unclonable
quantum program. This primitive has emerged as a foundational topic in quantum cryptography, with significant recent
developments. However, characterizing the functionalities that can be copy-protected is still an active and ongoing
research direction.

Assuming the existence of indistinguishability obfuscation and learning with errors, we show the existence of
copy-protection for a variety of classes of functionalities, including puncturable cryptographic functionalities and
subclasses of evasive functionalities. This strictly improves upon prior works, which were either based on the existence
of heuristic assumptions [Ananth and Behera CRYPTO’24] or were based on the classical oracle model [Coladangelo
and Gunn STOC’24]. Moreover, our constructions satisfy a new and much stronger security definition compared to the
ones studied in the prior works. To design copy-protection, we follow the blueprint of constructing copy-protection
from unclonable puncturable obfuscation (UPO) [Ananth and Behera CRYPTO’24] and present a new construction of
UPO by leveraging the recently introduced techniques from [Kitagawa and Yamakawa TCC’25].

*This article is a merger of the following two works, and subsumes both the works: [ABH25] (https://eprint.iacr.org/2025/1207.pdf) and [KY25a]
(https://eprint.iacr.org/2025/1264.pdf).

Contents

1

Introduction
1.1 OurResultsinaNutshell e e e
1.2 Technical OVerview e e e e

Preliminaries

2.1 Quantum Query Lower Bound
2.2 Min-Entropy, Universal Hash Functions, and Leftover Hash Lemma
2.3 Classical Cryptographic Primitives e
2.4 Quantum Goldreich-Levin
2.5 Useful Lemma e e e e e e

Definitions
3.1 Definition of Copy-Protection. e
3.2 Definitions of Unclonable Puncturable Obfuscation

Strong Monogamy Property of Coset States with Auxiliary Inputs
4.1 Proofof Theorem 4.2 e e e e e e

Construction of UPO
5.1 ConstruCtion v v i e e e e e e
5.2 Proof of Security e e e e

Alternative Proof of Security for Uniform Inputs

Oracular Pseudorandomness-Style Copy-Protection

7.1 Puncturable Secure Circuits e

7.2 Oracular Pseudorandomness-Style Copy-Protection for Pseudorandomness-Style Puncturable-Secure
CIrCuits o o e e

Oracular Unpredictability-Style Copy-Protection

8.1 Progmaskable circuitclasses
8.2 Oracular Unpredictability-Style Copy-Protection for Progmaskable Circuits
8.3 Relation between Progmaskable and Puncturable Circuits

Summary of Results

Proof of Theorem 6.2

14
14
14
15
16
17

18
18
22

26
28

32
32
34

39

4?2
42

46

52
52
57
64

69

73

1 Introduction

Quantum copy-protection is one of the prominent notions in quantum cryptography. Informally speaking, copy-protection,
introduced by Aaronson [Aar(9a], is a functionality preserving compiler that turns an efficiently implementable function
f into a quantum state ps such that given a single copy of py, it is computationally infeasible to produce two
or more copies that approximately compute f. This primitive exemplifies the power of quantum mechanics in
cryptography, belonging to an emerging and rapidly expanding class of unclonable primitives. These primitives
exploit the fundamental no-cloning principle of quantum mechanics to achieve cryptographic tasks that are provably
impossible using classical computational resources. This area has seen remarkable momentum in recent years with
many feasibility results [CMP20a, CLLZ21, ALLT21a, AKLT22, 1L.L.QZ22, AKL23, CHV23, AB24, CG24b], negative
results [AP21, AK22], study of weaker variants [ALL"21b, AP21, BGK24] and stronger security notions [CG24a].
Yet despite this remarkable progress, some important questions remain.

Copy-protectable functionalities. Ever since it was first conceived in 2009, the central research question in the topic
of copy-protection has been to understand the classes of functionalities that can be copy-protected.

Ideally, we would want to identify which properties the functionalities need to satisfy in order for them to be
copy-protected. It was observed in [Aar(09a] that functionalities that are efficiently learnable cannot be copy-protected in
any meaningful way. On the other hand, it was believed that unlearnable functionalities can be copy-protected. However,
a recent work [AP21] shows that even unlearnability is not a sufficient criteria for copy-protectable functionalities.
Following [AP21], the works of [CMP20b, CLLZ21, LLQZ22, AKL ™22, AKL.23, CHV23] showed that some specific
cryptographic functionalities (PRF, decryption and signing functionalities) and point functions can be copy-protected.
While these works made significant advances, they failed to shed insight on the type of properties the functionalities
needed to satisfy in order for them to copy-protectable!.

Couple of recent works [AB24, CG24b] took a different route and made a major progress towards characterizing the
class of functionalities that can be copy-protected. They identified a property called puncturability and argued that
as long as a class of functionalities satisfied puncturability then they can be copy-protected. However, these works
came with a major caveat: their constructions were either based on heuristic assumptions? or in the classical oracle
model. Moreover, there was also a restriction on the output length of functionalities and only long output® puncturable
functionalities can be copy-protected. Additionally, [AB24] also showed feasibility of copy-protecting a natural subclass
of evasive functions albeit under heuristic assumptions: These works left open the following important question:

Which classes of functionalities can be copy-protected under well-studied assumptions?

Revisiting security definitions. The existing security definitions of copy-protection is quite restrictive and does not
capture many attack scenarios. Before we elaborate, let us first recall the typical security definition of copy-protection
that has been studied in the literature. The security experiment starts with the (adversarial) efficient Alice receiving a
copy-protection of f. It then creates a bipartite state, and shares with two non-communicating efficient adversarial
parties Bob and Charlie. Then, Bob and Charlie respectively receive uniformly random® inputs x5 and x and to break
security, they need to simultaneously produce f(xg) and f(x). For security to hold, it is crucial that Bob and Charlie
do not receive any other auxiliary information about the function. As an example, all bets are off if Bob learns the
output of the function on related inputs (say, xg + 1) or even if xz is sampled from a different distribution other than
the uniform distribution. In some settings, it is crucial that the security needs to be strengthened to allow for Bob and
Charlie to also receive some leakage about f. A case study to consider is copy-protecting decryption functionalities.
Ideally, we would like to achieve chosen ciphertext attack (CCA) security: even if Bob and Charlie receive access to

I[ALL"21a, LLQZ22] did conjecture that any class of functionalities that can be watermarked can also be copy-protected. However, as far as we
know, there is no proof of this conjecture.

2In particular, they proposed a new conjecture called the simultaneous inner product conjecture and based security of copy-protection under this
conjecture along with indistinguishability obfuscation. Till date, this conjecture has neither been proven nor disproven.

3By long output, here we mean that the output length is w(log(A)).

4We note that this is not the case for all functionalities. For instance, for point functions, the distribution over (xg, x¢) is not uniform. However, for
many other functionalities, such as pseudorandom functions [CLLZ21], signing functionalities [LLQZ22], uniform distribution is the one commonly
considered in the literature.

a decryption oracle, they should not be able to decrypt the challenge ciphertext. Unfortunately, the existing security
definition of copy-protection does not capture CCA attacks.
This prompts the following question:

Can we achieve a stronger definition of copy-protection wherein the security holds even if
Bob and Charlie receive non-uniform inputs as well as some leakage about the function?

1.1 Our Results in a Nutshell

We make progress on the aforementioned questions. We identify interesting classes of functionalities that can be
copy-protected under well studied assumptions, strictly improving upon existing results. Our feasibility also satisfy
stronger security definitions wherein the security guarantees hold even if the adversarial Bob and Charlie receive
non-uniform challenge inputs and additional information about the functionality being copy-protected. Stating our
results formally would involve recalling and introducing many definitions which in turn would overwhelm the reader.
Instead, we will present the main consequences of our results. The formal result statements (which are more general)
would be stated in Section 9.

Puncturable functionalities. A class of (efficiently implementable) functionalities F is puncturable” if it is equipped
with an efficient puncturing algorithm Puncture such that given a function f € F and an input x, it produces a punctured
function fy such that even given fy, it is computationally infeasible to produce f(x) except with probability negligibly
close to 27", where m is the output length of f. Several puncturable cryptographic functionalities have been studied
starting with the seminal works on puncturing pseudorandom functions (see for example [BW 13]).

We show the following:

Theorem 1.1 (Informal). Assuming indistinguishability obfuscation and one-way functions, there exist copy-protection

for:
* m-bit output puncturable functionalities, where m = w(log(A)) and,
e [-bit output puncturable functionalities

Prior works on copy-protecting m-bit output puncturable functionalities, for m = w(log(A)), either relied upon
heuristic assumptions [AB24] or were based in the classical oracle model [CG24b]. In contrast, our result is based on
well-studied assumptions. Moreover, copy-protecting 1-bit output puncturable functionalities in the plain model was not
even known prior to our work.

Another (stronger) variant of puncturing security we can consider is pseudorandomness puncturing security wherein
it is required that even given fy, f(x) is computationally indistinguishable from uniform. For such functionalities,
we can consider a different security definition for copy-protection. Instead of Bob and Charlie receiving x4 and
xc respectively, they instead respectively receive (xz,y5) and (x, yc) respectively. Here, yg (resp., yc) is either
C(x3) (resp., C(x¢)) or sampled uniformly at random. This variant was first studied by [CLLZ21] in the context of
copy-protecting pseudorandom functions. On the other hand, we study this definition for the more general class of
pseudorandom puncturable functionalities. We call a copy-protection scheme satisfying this variant to be pseudorandom
copy-protection.

We show the following:

Theorem 1.2 (Informal). Assuming indistinguishability obfuscation and one-way functions, there exist pseudorandom
copy-protection for pseudorandom functionalities (for all output lengths).

The prior work on pseudorandom copy-protection® [CG24b] relied upon the classical oracle model [BBV24].

SIn the technical sections, we refer to this as unpredictability-style puncturable security (see Definition 7.1).
6[CG24b] referred to it as decision copy-protection.

Multi-point functions. A class of functionalities F is a class of k-point functions if every function f : {0,1}" — {0,1}
in F satisfies the property that there are exactly k inputs x1,...,x; € {0,1}" such that f(x;) = 1 and for every
x & {x1,...,x¢}, f(x) = 0. When k = 1, this precisely corresponds to the case of point functions. Copy-protecting
point functions has been extensively studied [Aar09b, CMP20a, AKLT22, AKL23, CHV23] and the work of [CHV23]
presents a construction of copy-protection for point functions from indistinguishability obfuscation and learning with
errors. However, their work does not address the more general problem of k-point functions, for arbitrary k.

We show the following:

Theorem 1.3 (Informal). Assuming indistinguishability obfuscation and one-way functions, there exist copy-protection
Jor k-point functions, where k > 1 and k is polynomial.

Stronger Security Definition. In addition to the above new results, we also study stronger security definitions for
copy-protection. Specifically, we strengthen the security definitions in two ways:

 Entropic inputs: in the existing definitions of copy-protection, Bob and Charlie are given uniformly random
(independently generated or identical) inputs. However, the existing definitions do not readily generalize to the
setting when the inputs are not generated uniformly at random and instead have high entropy. In our definitions
(see Section 3.1), Bob and Charlie respectively receive the inputs x4 and x - such that the inputs are sampled from
a high entropic distribution.

* Oracle access: We additionally give Bob B and Charlie C access to an oracle that computes f, where f is the
program being copy-protected. To avoid trivial attacks, the oracle that Bob (resp., Charlie) has access to outputs
L on the input x4 (resp., x-). Moreover, even Alice 4 receives oracle access to C. We note that the oracle access
to all the adversaries in our security definitions(see Section 3.1) are with respect to quantum superposition queries
(see Section 2 on Page 14 for the formal definition of superposition queries).

To the best of our knowledge, this is the first work that studies the above strengthenings of the security definition of
copy-protection. Both the results discussed earlier (Theorem 1.1, Theorem 1.2 and Theorem 1.3) satisfy (under the
additional assumption of learning with errors) the stronger security definition of copy-protection that incorporates
both the above bullets’.

Blueprint: Copy-protection from UPO. Our main approach is to design copy-protection from a recently introduced
primitive called unclonable puncturable obfuscation (UPO) [AB24], which combines the concepts of program obfuscation
and unclonability. In particular, they showed that UPO for m-bit output puncturable functionalities (for m € w(log(A)),
is also a copy-protection scheme for the same class of functionalities. However, their construction of UPO relied
upon heuristic assumptions. The main innovation of our work is to show that (a variant of) UPO can be achieved
based on well-studied assumptions, which leads us to the first bullet of Theorem 1.1. Specifically, we construct UPO
from indistinguishability obfuscation and one-way functions (and from indistinguishability obfuscation and learning
with errors in the high min-entropic setting). Additionally, we present new constructions of copy-protection from
UPO, showing that not just m-bit output puncturable functionalities (for m € w(log(A))) but also broader classes of
functionalities with varying output sizes can be copy-protected based on the variant of UPO that we construct, which in
turn lets us prove Theorem 1.2 and Theorem 1.3.

1.2 Technical Overview

Recap: Unclonable Puncturable Obfuscation (UPO). We first recall the definition of unclonable puncturable
obfuscation. UPO consists of two efficient algorithms (06f, QEval). The algorithm O5f takes as input a classical circuit
C:{0,1}m — {0, 1} e and outputs a quantum state C. The algorithm QEval takes as input a quantum state C, an
input x and outputs C(x).

7In the context of pseudorandom copy-protection, our construction satisfies an even stronger notion that implies both the “identical coin” and
“independent coin” versions, with the above-mentioned strengthening. We refer to this stronger notion as the “+” version of the strengthened
pseudorandom copy-protection (see Definition 3.4), due to it’s similarity with the “+”-notion studied in the context of Single Decryptor Encryption
(SDE) introduced in [KY25b].

Couple of security notions have already been considered for UPO [AB24], and we introduce an additional security
notion in this work. However, all the (new and old) definitions follow the same template: the adversarial Alice () either
receives obfuscation of C (when challenge bit b = 0) or obfuscation of C punctured at a random point(s) (when b = 1).
Here, C is adversarially chosen but the random points at which C is punctured is hidden from 4. Then, 2 computes
a bipartite state and shares it with two non-communicating adversaries Bob 3 and Charlie (C) who then receive the
random points. At this point, B and C need to simultaneously output one bit each such that they both together are
correlated with b. The different variants depend on (a) how the random points are sampled and, (b) how the output of B
and C are correlated with b.

In more detail, the experiment is a game between the challenger and the adversary Acp, = (4, B, C).

1. On input 1%, 4 sends a circuit C : {0,1}%» — {0,1}‘ut (to be obfuscated) together with two circuits
pig 2 {0,1} e — {0,1} oot and pie - {0,1} e — {0, 1} out. The role of ps and p will be clear below.

2. The challenger does the following: it samples (xg,xc) from some input distribution. It then computes:
Yz0 < C(xs), Yo < C(x¢), Yg1 < us(xs) and, Y1 < pc(xc). It also samples two bits (coing, coinc)
from some distribution. The challenger then generates obfuscation of C*[xg, X¢, Y coing Y,coin C], where C* is
a circuit that on input x, it outputs Yz coin, and on input x, it outputs Y cin. and all other inputs, it behaves
exactly like C.

3. A creates a bipartite state g over registers Rg and R-. Then, 4 sends register R to B and register R to C. The
challenger sends xg and x to B and C, respectively.

4. B and C respectively output coin; and coin/..

Depending on how (xg,x.) is sampled and how the winning condition is defined, we can consider three different
security definitions:

1. Identical-secure UPO [AB24]: x5 = x, and moreover, Xz is sampled uniformly at random from {0, 1}&"'@.
coing = coin, and moreover, coing is sampled uniformly at random. (4, B, C) wins the above experiment if
coiny = coinj. = coing.

2. Correlated-secure UPO [AB24]: x3 and x are independently sampled from the uniform distribution. On the
other hand, (coing, coin.) is sampled as above. The winning condition is also defined the same as above.

3. UPO™: this is a new definition that we introduce in this work. (xg, x.) is sampled as in correlated-secure UPO.
On the other hand, coing and coin, are sampled uniformly at random. The winning condition is defined as
follows: (4,8,) win if (coinf, & coinl.) = (coing @ coinc). We also consider a strengthening where (xg, x¢)
are sampled from a high-entropic distribution.

Ref. [AB24] constructed identical-secure and correlated-secure UPO from heuristic assumptions. The same work also
showed construction of copy-protection for long-output puncturable functionalities from correlated-secure UPO and for
subclass of evasive functionalities from identical-secure UPO.

Our Contributions. We show the following:

» UPO™implies correlated-secure UPO (Theorem 3.17).

» We show how to construct UPO™based on indistinguishability obfuscation (Section 5) and depending on whether
the inputs (xg, x) are sampled from a high-entropic distribution or uniform we either respectively require
learning with errors or one-way functions.

Both of them combined provides the backbone to prove Theorems 1.1 and 1.2 and Section 8.1.1. We now discuss the
main ideas behind the construction of UPO™.

1.2.1 1.2.1 Construction of UPO™

We first start by recalling important properties about coset states and the monogamy properties associated with them.

Coset states and strong monogamy property with auxiliary input. Our construction relies on coset states and the
computational strong monogamy of entanglement property. We introduce the relevant notations following [CLLZ21,
AKL"22]. For a subspace A C F7, let

o AL denote its dual,

* Cany(s) be the lexicographically least element of A + s (computable in poly(#n) time),
* CS(A) := {Cany(s) : s € F3}.

For canonical representatives (s,) € CS(A) x CS(A™), define the coset state

|Ast) = \/ﬁ Z,(—l)@‘""> la+s).

acA

Applying H®" maps |Ag) to ’A#s>.

We often write iO(A +s) and iO(A+ + t) to denote obfuscated programs by O that verify membership in A + s
and A+ + t, respectively.

Previous work [KY25b] has shown that the following computational strong indistniguishability monogamy property
holds based on its search variant [CLLZ21, CV22]. Consider the following game played by an adversary that consists
of a tuple of algorithms (4, B, C).

1. 4 is given a coset state |Ag+), where A C IF} is a uniformly random subspace of dimension 7/2, and (s, t)
are uniformly drawn from CS(A) x CS(A™). Additionally, 4 receives two obfuscated membership checking
programs iO(A 4 s) and iO (AL + t). 4 outputs a bipartite state g over the registers Rz and R -.

2. B (resp. () is given the register Rz (resp. R¢), uniformly random string 73 < IF} (resp. ¢ <— [F}), and the
description of A, and outputs a bit bg (resp. b).

3. The adversary wins if bg @ b = (rg,s) @ (r¢, t), where (-, -) denotes the inner product.

The property guarantees that assuming that iO is a secure indistinguishability obfuscator and the existence of OWFs,
any QPT adversary can win the game with probability at most 1/2 + negl(A).

In this work, we introduce a variant, which we call the computational strong indistinguishability monogamy property
with simulatable auxiliary input. In this variant, the adversary (4, B, C) may additionally receive auxiliary inputs that
depend on A, rg, and r-. The property guarantees that any QPT adversary can win the game with probability at most
1/2 + negl(A), provided that 4’s auxiliary input is statistically simulatable without using A, 7, or r¢. The motivation
for this variant will become evident in the security proof sketch of our UPO scheme below.

We prove that this variant holds under the assumption that QO is a secure iO and there exist OWFs. The proof roughly
proceeds as follows. We first consider the information-theoretic version of the property, where obfuscated circuits are not
provided and the adversary is unbounded. In this setting, we can simulate 4’s auxiliary input using the simulator without
relying on (A, r3,7¢), and subsequently sample the auxiliary inputs of 8 and ¢ from the corresponding conditional
distribution given (A, rg,7¢) in the second stage. This “reverse sampling” may be computationally inefficient, but
efficiency is irrelevant in the information-theoretic setting. Consequently, the additional auxiliary inputs do not give the
adversary any advantage, and the problem reduces to the known version without auxiliary inputs. Finally, we lift this
argument to the computational setting by applying the technique of [CLLZ21].

Construction. Our construction of UPO is simple and closely resembles the copy-protection scheme in the classical
oracle model by Aaronson et al. [ALL"21b].
Let F be a puncturable PRF (PPRF).

* 06f(1*,C) Sample a PPRF key K and a coset state |Ag;) where (s,t) <~ CS(A) x CS(A+). Generate
obfuscated circuits
Cmc < iO(A+s), Ch « iO(At +1).

Py[Cme, C,K](a, x)
Hardwired constant: A description of a boolean circuits Cpc and C, and a string K.
Input: (a,x).
1. If Cmc(a) = 0, output L. Otherwise, go to the next step.
2. Output Fg(x) @ C(x).

Figure 1: The description of the circuit P;.

P2[Cire, K] (a, x)
Hardwired constant: A description of a boolean circuits Cnﬁc and a string K.
Input: (a,x).
1. If Ck_(a) = 0, output L. Otherwise, go to the next step.
2. Output Fg(x).

Figure 2: The description of the circuit P;.

Then generate obfuscated circuits

Py <+ iO(P;[Cme, C, K]), P, + iO(P,[Ch, K])

mc’/
where P; and P, are circuits described in Figure 1 and Figure 2, respectively. Output ¢ := (|As;), P1, P2).

o QFEwval (Z‘ = (|Ast), Dy, 132), x) : Starting with | As ¢), coherently evaluate D to obtain Fg (x) & C(x), uncompute
to recover | A), apply H®" to get | Af), coherently evaluate P, to obtain Fg(x), take the XOR of them to get
C(x) and output it.

Correctness is immediate. We prove that it satisfies D-UPO™security for any product distribution 9D that has
sufficiently high min-entropy assuming the security of iO and LWE assumption.® Below we outline the ideas for the

security proof.

Security proof sketch. We had informally defined UPO*earlier. We will more explicitly define the security experiment

below and in particular, we will also incorporate the fact that B’s and C’s inputs are sampled from a high min-entropic

distribution. For a product distribution D = Dg x D and a QPT adversary 4., = (4, B, C), the security experiment
of D-UPO ™ security works as follows.

1. Oninput 1%, 4 sends a circuit C : {0, 1} — {0, 1} eut together with two circuits pp : {0,1} e — {0,1}fout
and ¢ : {0,1} e — 0,1} bout,

2. The challenger does the following.
* Choose coing < {0,1}, generate x5 < Dg(11), Ygo < C(x5), and Y1 < pz(xs).
* Choose coin¢ < {0,1}, generate x¢ < De(11), Yo < C(x¢), and Yeq < pe(xe).

The challenger generates C := (|As), Dy, 132) < O6f (11, C*[x3, xc, Y3,coings Y¢,coin.]) and sends Cto 4. Here,
C*[xs,%¢, Y8 coings Yc,coine) 18 @ circuit that on input x, outputs Y coin,, and on input x ¢, outputs Y, coin, and
on any other input, it behaves exactly like C.

3. A creates a bipartite state g over registers Rg and R.. Then, 4 sends register Rg to B and register R to C.

8While no LWE-based primitive appears in the construction, we rely on lossy functions in the security proof.

P{[Cmc, C, x5, xc, K{xs,xc}, wg, wc](a, x)
Hardwired constant: Descriptions of boolean circuits Cmc andC and string (xg, x¢, K{x3, x¢}, ws, wc), where K{xg, x.} describes
a key for PPRF punctured at {xg, x(}.
Input: (a,x).
. If Cmc(a) = 0, output L. Otherwise, go to the next step.
. if x = xg, output the hardwired value wg. Otherwise, go to the next step.

1
2
3. if x = x, output the hardwired value w,. Otherwise, go to the next step.
4

. Output Fy gy, 3 (%) ® C(x).

Figure 3: The description of the circuit P;.

Py [Cie, xw, x¢0, K{xs, X0}, ws, we](a, x)
Hardwired constant: A description of a boolean circuit C. and string (xs, x¢, K{x3, x¢}, ws, w¢), where K{xz,x} describes a
key for PPRF punctured at {xg, x.}.
Input: (a,x).
1. If Cio(a) = 0, output L. Otherwise, go to the next step.
. if x = xg, output the hardwired value wg. Otherwise, go to the next step.

2
3. if x = x, output the hardwired value w,. Otherwise, go to the next step.
4

. Output Fg(y, ».1 (%).

Figure 4: The description of the circuit Pj.

4. The challenger sends x5 and x to B and C, respectively.

5. B and (respectively output coinj; and coin).. The challenger outputs 1 if coinl, & coinl. = coing & coin,
otherwise outputs 0.

Our goal is to show that the probability that the above experiment returns 1 is negligibly close to 1/2. To prove this, we

consider the following sequence of hybrids.
First, by the standard puncturing technique, we can replace the obfuscations

1"51 <~ lo(Pl [Cmc/ C* [xﬂl Xc, Yﬂﬁ,coinfg/ YC,coinC}/K])/ 1,52 — ZO(PZ [ern_c/ K])

with
IO(Pl/ [CmC/ C/ Xg, Xc, K{xﬂ/ xC}/ Ys S3) YQS,coinq;/ Ye S3) YC,coinC])r

iO(P}[Cine, x5, ¢, K{xs, X0}, y5,Yc)),

where K{xg, x(} is a punctured PPRF key punctured on {xs, x¢}, Y=,y are uniformly random, and P| and Pj are the
circuits described in Figures 3 and 4, respectively.

Next, since ¥ is uniformly random, the distribution of ¥+ ® Y coin,. is also uniformly random. Therefore, by
relabeling ¥ @ Y coin @S Y ¢, the obfuscated circuits can be rewritten as follows:

lO(P]/ [CmC/ C/ X3, xC/ K{X‘BI xC}I y‘B EB YZB,COIHIBI yC])/

lO(Pé [erﬁcr X3, Xc, K{x‘Br xC}/ nyr yC > YC,coinf])'
Here, we introduce a trick similar to one used in [KY25b]: we replace the challenge bits coing and coin, with
coing @ (rg,s) and coing @ (rc, t) for uniformly random rz and ¢, respectively. Note that this does not change the
distribution of the challenge bits, since they are uniformly random. With this modification, the obfuscated circuits

become
ZO(Pll [Cmc/ C, xg, Xc, K{X!B/ xC}/ Yz D Y’B,coim;;@(rrg,s)/ yC])/

ZO(Pé [Cﬁc' Xz, Xc, K{x@/ xC}/ Y8, Yc D YC,COIn&B(m;,s)])'

The winning condition is now
./ A . .
coing & coin- = coing & coinge & (rg,s) & (re, t).

What this means is that if we can somehow simulate the hybrid knowing coing, coin., but without knowing s or ¢,
then we may obtain a reduction to the computational strong indistinguishability monogamy property. Indeed, whenever
the above condition holds, we have

(coinlg @ coing) & (coinl & coing) = (rg,s) & (re, t).

However, the issue is that simulating the hybrid for the adversary still requires knowledge of s and ¢, or at least (rg, s)
and (r, t), since these bits determine which of Y5 g or Y5 1 (resp. Y or Y1) is embedded into the obfuscated circuits.

[KY25b] resolved a similar issue in the context of SDE based on the following observation: the first (resp. second)
obfuscated circuit outputs a non-_L value only when the first input a belongs to A + s (resp. A~ + t). But given such
an element, if one knows the description of the subspace A, one can efficiently recover s (resp. t). Therefore, instead of
choosing between Yy and Y 1 (resp. Y0 and Y, 1) depending on (rg, s) (resp. (rc,t)), we can let the obfuscated
circuits choose the appropriate one by deriving s (resp. t) whenever needed. This idea eliminates the need for explicitly
knowing s or t when generating the obfuscated circuits.

While this approach is sufficient in the context of SDE as in [KY25b], we still face a problem: the above idea requires
embedding the description of A and rg or 7 into the obfuscated circuits. However, in the security experiment of UPO,
the obfuscated circuits must be generated in the first stage, before the state is split. On the other hand, in the experiment
for the computational strong indistinguishability monogamy property, the description of A and rg, r are only given to
the adversary in the second stage. This creates a discrepancy. Even relying on the simulatable auxiliary-input variant of
the monogamy property, almost no information on (A, r3,7¢) is available in the first stage. Thus, we need an additional
trick to simulate the obfuscated circuits without knowing (A, 73, 7¢).

To implement this idea, we want to ensure that whenever the first obfuscated circuit takes x4 as input (resp. the
second circuit takes x), it can internally derive (A, r3) (resp. (A, 7¢)), which is then used to compute (73, s) (resp.
(rc, t)) as above. At the same time, the circuits should not leak any information about A or (74, 7¢), so that the reduction
to the computational strong indistinguishability monogamy property with simulatable auxiliary inputs remains valid. To
reconcile these conflicting requirements, we rely on lossy functions.

Roughly, we take a lossy function F in injective mode and a universal hash function k, and embed (F(x3), h(xg) &
Al|rg) into the first obfuscated circuit and (F(x.), h(xc) & Al|rc) into the second. The circuits are then modified
to recognize x5 and x . using F(xz) and F(x.), and to recover A||rg and A||r. by XORing with h(xg) and h(x.),
respectively. This addresses the first requirement. For the second requirement, we instead choose F from its lossy mode,
where the image size is much smaller than the input space. Then, when x4 and x~ have sufficiently large min-entropy
compared to the length of Al|r4 and A||rc, they retain high min-entropy even given F(x4) and F(x.). By the leftover
hash lemma, h1(x3) and h(x) are statistically close to uniform, so almost no information about (A, ¥, 7¢) is embedded
in the circuits. As the two modes of the lossy function are computationally indistinguishable, both requirements are
virtually satisfied. More precisely, we begin by considering the injective mode, which allows us to modify the obfuscated
circuit using the security of iO. We then rely on the indistinguishability of the two modes to switch to the lossy mode.

Here, it is essential to rely on the simulatable auxiliary input variant of the computational strong indistinguishability
monogamy property. The reason is as follows. The values (F(xg), h(x3) @ Al|rs, F(x¢), h(xc) & Allrc) are
embedded in the obfuscated circuits. While these values are statistically simulatable without using (A, 73, 7¢) in lossy
mode as argued above, the reduction must still provide the UPO adversary with consistent xg and x ., sampled from the
corresponding conditional distribution in the second stage. The auxiliary input variant of the computational strong
indistinguishability monogamy property precisely captures this scenario: we can view (h(xg) @ A||rs, h(xc) @ Al|re)
as 4’s auxiliary input, xg as B’s auxiliary input, and x as C’s auxiliary input. Therefore, the security of the UPO
scheme reduces to this property.

Alternative security proof without LWE. Our security proof outlined above relies on LWE since our construction
makes use of lossy functions. We also give an alternative proof that solely relies on the existence of iO and OWF, thus

10

avoiding the LWE assumption, in the special case where the distributions of x4 and x are uniformly random. This
proof relies on a primitive called key-robust non-committing encryption, which we introduce in this work and construct
from any keyed injective OWFs, which exist assuming iO and OWFs.

1.2.2 Copy-Protection from UPO: Two Approaches

We discuss two approaches to construct copy-protection from UPQO. Before we discuss the approaches in more detail, we
will first recall the security definitions of both UPO and copy-protection:

* In the security definition of copy-protection, 4 receives as input copy-protection of a circuit C sampled from
some distribution. In the splitting phase, 4 then computes a bipartite state which it then shares with B and C.
After the splitting phase, B receives x5 and C receives x¢, where (xg, x.) is sampled from some distribution.
In the pseudorandom copy-protection definition, B and C additionally respectively receive ¥z and y -, which is
either the true function value or sampled uniformly at random. Moreover, for both (standard) copy-protection
and pseudorandom copy-protection, we can consider the stronger (called the oracular) definition wherein: (a)
(xg, x¢) are sampled from a high-entropic distribution and, (b) B (resp., () has oracle access to C punctured at
xg (resp., xc). Moreover, 4 also receives oracle access to C.

« In the security definition of UPO, 4 receives as input obfuscation of either C (if challenge bit b = 0) or C
punctured at (xg, x¢) (if challenge bit b = 1), where (xg, x¢) is chosen from some distribution. Here, C is
chosen by 4. After the splitting phase, B receive as input x3 and C receive as input x .

The construction of copy-protection from UPO in both the approaches is the same: to copy-protect a circuit C, obfuscate
C using the UPO scheme. The evaluation algorithm of the copy-protection scheme is the same as the evaluation
algorithm of the UPO scheme.

Towards reducing copy-protection to UPO, the main step is to move from copy-protecting the circuit C to an
intermediate hybrid wherein 4 receives copy-protection of C (with probability 0.5) and copy-protection of C punctured
at the inputs (xg, x¢) (with probability 0.5). Once we move to this intermediate hybrid we can then invoke the security
of UPO to complete the proof.

Approach 1. Pseudorandom Puncturable Functionalities (Definition 7.1). First, we start by considering copy-
protecting pseudorandom puncturable functionalities. We briefly discussed the definition of pseudorandom puncturable
functionalities in Section 1.1.

At a high level, the proof proceeds as follows: (for now, let us not consider the oracular definition mentioned above)

* In the first step, we consider the copy-protection experiment played between (4, B, C) and the challenger.

* In the second step, instead of copy-protecting C, instead copy-protect C defined as follows: on input x, it outputs
ys = C(x3) and on input x, it outputs y = C(x) and on all other inputs, it behaves exactly like C. By iO
security?, this is indistinguishable from the previous step.

* In the third step,

— With probability 0.5, 4 gets copy-protection of C (as defined in the above bullet) and,

— With probability 0.5, it gets copy-protection of C’, where C’ is the same as C except that y3 and vy, are
sampled uniformly at random.

The indistinguishability of the second and third step follows from the pseudorandom puncturing security.
* Finally, in the fourth step,

— With probability 0.5, 4 gets copy-protection of C (as against C in the above step)
— With probability 0.5, it gets copy-protection of C’, where C’ is as defined above.

°Due to the composition theorem of [AB24], we can assume without loss of generality, an UPO scheme satisfies iO security.

11

Since the functionality of Cis exactly the same as the functionality of C, the indistinguishability of the third and
fourth step follows from iO security.

Once we reach the fourth step, we can then invoke the UPO security to complete the proof since the fourth step
corresponds to the security experiment of UPO.

While this proof template can be suitably expanded to get a full fledged proof, this is inadequate for the stronger
oracular definition. The reason being that since 4, B and, € now can compute C on additional inputs owing to the fact
that they have access to an oracle that computes C; note that the oracles that B and C receive access to disallow queries
respectively on xg and x.. Fortunately, we leverage standard techniques [BBBV97b] combined with the observation
that in the UPO security experiment, B and C know the circuit description C in the clear, to show that even the stronger
oracular definition is satisfied.

Approach 2. Progmaskable Functionalities (Definition 8.4). We consider another class of functionalities, called
progmaskable functionalities. We consider a simplified version of the definition below. At a high level, a function class
is progmaskable (with respect to appropriate distributions over the circuit class and input distributions) if the following
two distributions are computationally indistinguishable:

 (C,x), where C is sampled from a distribution over the circuit class and x is sampled from a distribution over the
input class.

. (6, x), where x is sampled from some input distribution (potentially different from the one considered in the first
bullet) and C is sampled as follows: first sample C as in the first bullet, then sample y from some distribution that
depends on (x, C) and then C is defined to be the same as C except on input x, it outputs . In other words, C is
obtained by programming the output of C on x to be y.

The distribution over y is important: we consider the half-correct distribution where y = C(x) with probability

0.5 and y is sampled uniformly at random subject to the condition that y # C(x), i.e., y is correct with probability
0.5.

The indistinguishability of the above two distributions implies that given the programmed C, it is both computationally
hard to find the true output of C on x, and also that (C, x) can be masked as (C, x).

In the more general definition (Definition 8.4), we consider multiple inputs x1, ..., X, instead of just one input.
Progmaskable functionalities capture a large class of functionalities, such as pseudorandom puncturable functionalities
(Theorem 8.18) and k-point functions (Theorem 8.9)°.

The proof of security for copy-protecting progmaskable functionalities proceeds as follows:

* In the first step, we consider the copy-protection experiment played between (4, B, C) and the challenger. That is,
4 receives copy-protection of C, B receives x5 and C receives X .

¢ In the second step, 4 receives copy-protection of C, where C is a circuit that behaves the same as C except that
on input X, it outputs ¥ and on input x, it outputs y~. Here, y3 and vy, are sampled from the half-correct
distribution. That is,

— With probability 0.5, y3 = C(xg) and y = C(x¢),

— With probability 0.5, y3 and v are sampled from the uniform distribution subject to the condition that
ys # C(xp) and yc # C(xc).

Moreover, B receives x5 and C receives X .

The indistinguishability of the first and the second step follows from the progmaskable security.
¢ In the third and final step, we do the following:

— With probability 0.5, 4 receives copy-protection of C,

101 fact, they capture an even larger class of functionalities called preimage-sampleable evasive functionalities introduced in [AB24], see
Theorem 8.6 for the formal statement.

12

— With probability 0.5, 4 receives copy-protection of C where C is the same as in the second step except that
ys and Yy are always sampled from the uniform distribution subject to the condition that y4 # C(xg) and
yc # C(x¢). In particular, y5 and y are not sampled from the uniform distribution.

We can now immediately reduce the third step to the security of UPO, which completes the proof.

As before this proof template does not work for the oracular definition and we need to invoke quantum query lower
bounds [BBBV97b] in order to show that the stronger definition is satisfied.

As mentioned before, progmaskable functionalities capture pseudorandom puncturable functionalities (Theorem 8.18).
As a result, (unpredictable-style) copy-protection of progmaskable functionalities implies (unpredictable-style) copy-
protection of 1-bit output (unpredictable-style) puncturable functionalities (leading us to the second bullet of Theorem 1.1).
"' The same approach yields non-trivial bound of 1/2-security but not full security for copy-protection of m-bit
output pseudorandom puncturable functionalities, for m > 1, because we only get copy-protection of progmaskable
functionalities with bound 1/2 on adversarial success probability, which amounts to full security in 1-bit output setting
but may not provide full security for m > 1. We leave the question of strengthening the copy-protection of progmaskable
m-bit functionalities to get a bound of 1/2™ on adversarial success probability as an open question.

i0, LWE

Heuristic Assumptions

Section 5
Ref. [AB24]

Theorem 3.17_ Correlated-secure _ Ref. [A324§;
+ E
UPO UPO

Copy-Protection for
Long output
Puncturable functionalities

Section 7, ection 8.2

Pseudorandom Copy-Protection for
Pseudorandom Puncturable
Functionalities

Copy-Protection for

Progmaskable
M

Functionalities
Copy-Protection for 1-bit

. .. Section 8.1.1
Puncturable Functionalities

Y

Ref. [AB24] Identical-secure Ref. [AB24] Copy-Protection for
: : k-POlnt (p()ly k > 1)
UPO .
Functions

Heuristic Assumptions

We also use the fact that unpredictable-style and pseudorandom-style puncturing security are equivalent in the 1-bit output setting (see Lemma 7.3).

13

1.2.3 Concurrent and Independent Work

A couple of works [CG25a, CG25b] concurrently also address the problem of copy-protecting pseudorandom puncturable
functionalities under high min-entropic distributions. However, their approach is different, and in particular, they do not
go through the route of unclonable puncturable obfuscation.

2 Preliminaries

Notations and conventions. In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or
Gen) and classical variables (e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic
font and/or the bracket notation for (mixed) quantum states (e.g., g or |1,L7>).

Let [¢] denote the set of integers {1,--- , £}, A denote a security parameter, and y := z denote that y is set to be,
defined, or substituted by z. For any finite set X, we use | X| to denote the size of X, and for any ¢ € IN such that
¢ < |X]|, we use (}[f) to denote the set of all /-element subsets of X. For a finite set X and a distribution D, x <— X or

x & X denotes selecting an element from X uniformly at random, x <— D denotes sampling an element x according to
D. Moreover, Uniformy denotes the uniformly random distribution on the set X. Let y <— A(x) and y < 4(x) denote
assigning to y the output of a probabilistic or deterministic algorithm A and a quantum algorithm 2 on an input x and x,
respectively. When we explicitly show that A uses randomness r, we write i <— A(x;r). PPT and QPT algorithms
stand for probabilistic polynomial-time algorithms and polynomial-time quantum algorithms, respectively. Let negl
denote a negligible function, non-negl denote a non-negligible function, and poly denote a positive polynomial. For
astring x € {0,1}", x[i] is its i-th bit. For strings x,y € {0,1}", (x,y) denotes D¢, x[i] - y[i]. We often use the
similar notation for vectors x, y € IF4 by identifying elements of IF; and {0, 1} in the natural manner. For reals x, y and
J >0, we write x /5 i to mean |x — y| < 6.

We use gray sans serif font (e.g., X) to stand for a quantum register. For a quantum state g over registers Ry and Ry,
we write g[R1] to denote the portion of the state on register Ry. Similarly, for a pure quantum state |) over registers Ry
and R, we write [1f) [to denote the portion of the state on register R;. For quantum states ¢ and ¢, [[g — ¢'[|+ denotes
their trace distance. For any classical circuit C : {0,1}" — {0,1}™, and a subset of inputs S C {0, 1}", we denote
C\ S to be the circuit that on every input x € S, outputs L, and on every input x € {0,1}" \ S, outputs C(x). Finally,
for any classical circuit C : {0,1}" — {0,1}", and a quantum algorithm 4, we say that a QPT 4 has oracle access to
C, if 4 has two special quantum query registers, a n-qubit input register | and a m-qubit output register O, such that
during it’s execution, 4 can make polynomially many queries to C in superposition, where each superposition query
corresponds to the following: 4 sends the registers | and O to the oracle, on which the oracle applies the unitary version
of C, Uc = Yxeqo [X)(x]} ® Lyeqoym [y & C(x)) yo- and sends the registers back to 4.

2.1 Quantum Query Lower Bound

Theorem 2.1 ([BBBV97al). Let 4 be an adversary with oracle access to H : {0,1}™ — {0,1}" that makes at most T
queries. Define |§;) as the global state after A makes i queries, and Wy (|¢;)) as the sum of squared amplitudes in |¢;)
of terms in which A queries H on input y. Let e > 0 and let F C [0, T — 1] x {0, 1} be a set of time-string pairs such
that) cr Wy (|91)) < €2/T.

Let H' be an oracle obtained by reprogramming H on inputs (i,y) € F to arbitrary outputs. Define |4)l’ > as above
for H'. Then, TD (|pr){(¢1], |¢7)p7]) < €/2.

2.2 Min-Entropy, Universal Hash Functions, and Leftover Hash Lemma

The min-entropy of a classical random variable X is defined as
Ho(X) == — log(maxPr[X = x])
X

We often say that a distribution D over classical strings has min-entropy p if a classical random variable X according to
the distribution D has min-entropy p.

14

The average min-entropy of a classical random variable X conditioned on another classical random variable Z is
defined as B
Heo(X | Z) = —log(]EZFmexPr[X =x|Z= z})

The chain rule states that if Z is a random variable over £-bit strings, then
Hoo(X | Z) > Hoo(X) — L.
A family of functions H : X — Y is said to be universal, if it holds that for all x, x" € X such that x # x’, we have

Lemma 2.2 (Leftover Hash Lemma). Let H : X —) be a universal hash function family. For (possibly correlated)
classical random variables X and Z such that He(X | Z) > log | Y| + 2 log(%), the statistical distance between

{hh(X),Z)} and {hY,Z2)}

is at most €, where h < H and Y is uniformly random in).

2.3 Classical Cryptographic Primitives
Indistinguishability obfuscation

Definition 2.3 (Indistinguishability Obfuscator [BGI"12]). A PPT algorithm iQ is a secure indistinguishabilitu
obfuscation (iO) for a classical circuit class {C) } \eN If it satisfies the following two conditions.

Functionality preserving: For any security parameter A € IN, circuit C € C,, and input x, we have that

Pr[C'(x) =C(x) | C'+iO(C)] =1 .

Indistinguishability: For any QPT Sampler that outputs two circuits Cy, C1 € C, along with a quantum auxiliary
information aux and QPT distinguisher 4, the following holds:

IfPr[Vx Co(x) = C1(x) A |Co| = |Cq| | (Co, Cy, aux) < Sampler(11)] > 1 — negl(A), then we have
AV, (1) == ’Pr [ﬂ(i@(Cg),aux} =11 (Co, Cy, aux) + Sampler(l)‘)}

—Pr [ﬂ(i(’)(cl),aux) =11 (Coy, Cq, aux) < Sampler(l/\)} ‘ < negl(A).

There are several candidates of secure iO for polynomial-size classical circuits against quantum adversaries [BGMZ18,
CHVW19, AP20, BDGM20, WW21, GP21, DQV ™21, BDGM?22, BDJ 24, HJL25, CLW25].

Pseudorandom functions.

Definition 2.4 (Puncturable PRF). A puncturable PRF (PPRF) is a tuple of algorithms PPRF = (PRF.Gen, F, Puncture)
where {F : {0,1}fme — {0,1}feut | K € {0,1}*} is a PRF family and satisfies the following two conditions.

Punctured correctness: For any polynomial-sized set S C {0, l}fi"P and any x € {0, l}éi"P \ S, it holds that

Pr[FK(x) = Fx(s)(x) | K < PRF.Gen(1%),K{S} + Puncture(K,S)} ~1.

Pseudorandom at punctured point: For any polynomial-sized set S C {0, 1}Zi"P and any QPT distinguisher A4, it
holds that

| Pr [A(Fiegs)y, {Fi(xi) bues) = 1] = Pr[a(Feqs), (U,)) = 1] < negi(A),

where K + PRF.Gen(1%), K{S} < Puncture(K, S) and Uy, denotes the uniform distribution over {0,1}%ou,

15

IfS = {xj,x3,...,x} for some n € IN, we simply denote the punctured key by K{x},x3,...,x;;} instead of
K{{xj,x5,...,x}}.

Goldwasser-Goldreich-Micali tree-based construction of PRFs (GGM PRF) [GGMS86] from OWF yield puncturable
PRFs where the size of the punctured key grows polynomially with the size of the set S being punctured [BW 13, BGI14,
KPTZ13].

Keyed injective one-way functions.

Definition 2.5 (Keyed Injective D-One-Way Functions). Let D be a distribution over {0,1}m. A keyed injective
D-one-way function |OWF is given by a PPT algorithm Gen that takes 1 as input, and outputs a description of a
classical-polynomial-time-computable function F : {0,1}fme — {0, 1} eut, It satisfies the following properties.

Injectivity: With overwhelming probability over the choice of F <— Gen(l’\), F is injective.

D-One-Wayness: For all QPT algorithms 4,

Pr[F(x’) = F(x) | F « Gen(1"),x « D,x' + a(1*, F,F(x))} = negl(7).

For the uniform distribution ¥, keyed injective 7/-one-way functions exist assuming the existence of iO and
OWFs [BPW16]. Moreover, assuming the LWE assumption, for any distribution 9 that has min-entropy at least A€ for
some constant ¢ > 0, there exist keyed injective D-one-way functions. This directly follows from the construction of
lossy functions from LWE [PW11] (Theorem 2.7).

Lossy functions.

Definition 2.6 (Lossy Functions). A collection of ({inp, {ioss)-l0ssy functions LF is given by a pair of two PPT algorithms
(Geninj, Genjoss).-

* The injective function generation algorithm Geniy; takes the security parameter 1% as an input, and outputs a
description of a classical-polynomial-time-computable injective function Finj over the domain {0, 1}éi"P.

e The lossy function generation algorithm Genyss takes the security parameter 1* as an input, and outputs a
description of a classical-polynomial-time-computable function Foss over the domain {0, 1}fi"P whose image size
is at most 2Linp—lloss

LF satisfies the following mode indistinguishability.
Mode Indistinguishability: We have Fip; ~ Fioss, Where Finj < Geninj(11) and Fioes <+ Genjogs (14).

It is known that lossy functions can be constructed assuming the hardness of LWE [PW11]. The following
formulation is adapted from [CLLZ21].

Theorem 2.7 ([PW11]). Assuming the polynomial hardness of LWE, for any constant ¢ > 0, there exists a collection of
(linp, Lioss) -lossy functions such that linp — lioss < U

2.4 Quantum Goldreich-Levin

Ananth et al. [AKY?25] extended the quantum Goldreich-Levin lemma [AC02, CLLZ21] to the non-local setting, where
two non-communicating algorithms with potentially entangled quantum inputs are involved.'2.

12A slightly weaker version is also proven in [AKL23]

16

Lemma 2.8 (Simultaneous Quantum Goldreich-Levin [AKY25]). There exists a QPT oracle algorithm Ext that
satisfies the following. Letn € N, x5, xc € {0,1}", € € [0,1/2], and q be a quantum state over registers Rg and R.
Let B (resp. C) be a quantum algorithm that takes Rg (resp. R) and an n-bit string vz (resp. vc) as input, and outputs
a bit. If we have

re, e < {0,1}"

Pr bg; D bC = <1’g;, XQ3> D <Tc, XC> . brg — @(Q[Rq;],i’g;) >
be < C(q[Rel7e)

+€,

NI —

then, we have
Pr[£xt(B, ¢[Rs]) — x5 A Ext(C, g[Re]) — xc] > 4€2.
where B and C in the input of Ext mean their descriptions.

Lemma 2.8 was originally proven in [AKY25, Lemma 5] for the special case of xgz = x-. However, their proof
does not rely on this assumption, and the same argument holds for the more general case where x5 # X, as observed in
[KY25b].

2.5 Useful Lemma
The following lemma is implicit in [AKY?25]

Lemma 2.9. Let Ey, E1, Ey be events and 0 < 6 < 1. If Pr[Eg] = 1/2, Pr[Ey | Eo] =4 Pr[E;1 | —Ep], and
Pr[E; | Eo] =5 Pr[Ey | —Ey), then it holds that

Pr[E1 A Ep] + Pr[—Ey A —Ep] =5 Pr[Eq A Ep | Eg] + Pr[—E; A —E; | —Ey).
Proof. By the assumptions, we have
Pr[E; | Eo] + Pr[—E; | =Ep] =5 1
and
Pr[E; | Eg] 4+ Pr[—E; | —Ep] =5 1.
Then we have

Pr[E1 NEp | Eo] + Pr[—|E1 A —Ep | —|E0}

= (PI‘[E1 | E()] — PI‘[E1 N —Ep | Eo]) + (PI‘[—'E1 | —\Eo] — PI‘[—\El N Ep | —\Eo])
~sl— PI‘[El A=) | Eo} — PI‘[ﬂEl NEy | —\E()D)

— 1— (Pr[~Es | Eo] — Pr[~Ey A —Es | Eo]) — (Pr[Es | ~Eo] — Pr[Ex A Ea | —Eo])
s Pr[—|E1 N —-Ey ‘ Eo]) + PI’[El N Ep | —|E0}.

Thus, we have

PI‘[E1 AN Ez] + PI‘[ﬁEl A —|Ez]

1 1
= 5 (PI‘[El A Ep | Eo] + PI‘[El N Ep | ﬁE()D + 5 (PI‘[ﬁEl A —Ej | Eo] + PI‘[ﬁE] A —Ej | ﬁEO])
1 1
= 5 (PI‘[El N Ey | Eo]) + PI‘[—\El A —Ey | —|E0]) + 5 (PI‘[—'El A —Ej ‘ Eo] + PI'[E1 N Ep ‘ —|E0])
1

1
~5 5 (Pr[—E1 A —Ey | Eo] + Pr[Eqy A Ey | —Eg]) + 5 (Pr[—E1 A —Ey | Eo] + Pr[E; A Ep | —Eg])
= PI‘[ﬁE] A —Ej | Eo]) + PI‘[El A Ep | ﬁEo]

17

3 Definitions

3.1 Definition of Copy-Protection
First, we review the existing definition, which we refer to as unpredictability-style copy-protection.

Definition 3.1 (Oracular Unpredictability-Style Copy-Protection). Let Circ = {Cy }rexc, be a family of keyed
circuits with n-bit inputs and m-bit outputs. A copy-protection scheme for Circ is a pair of two algorithms CP =
(CopyProtect, Eval).

Copy?rotect(l/\, Cy) — C: The copy-protection algorithm is a QPT algorithm that takes a security parameter 1" and a
circuit Cy € Circ, and outputs a quantum state C.

Eval (C,x) — y: The evaluation algorithm is a QPT algorithm that takes a quantum state C and an input x € {0,1}",
and outputs a value y.

Evaluation correctness: For every k € K and x € {0,1}", we have
Pr [Zval (C,x) = Ck(x) | C + CopyProtect(1*,Cy) | =1 — negl(A).

Oracular Unpredictability-Style Copy-Protection Anti-Piracy: For a distribution D over K, x {0,1}" x {0,1}",

consider the following game Expé?apgch (A) between the challenger and an adversary Acp = (A, B, C) below.

1. The challenger chooses (k,x},x3) < D, generates C < CopyProtect(1*,Cy), and sends C, as well as
oracle access to Cy to A (see Section 2 (on Page 14) for the formal definiton of oracle access).

2. Sk creates a bipartite state q over registers Rg and R¢. Then, 4 sends register Ry to B and register R to
C.

3. The challenger sends x and oracle access to Cy \ {x] } to B and sends x5 and oracle access to Cy \ {x3 }
to C, where for any circuit Cy, and set S C X, Ci \ S denotes the circuit that for any input X € S outputs L,
and for every x € X \ S outputs Cy(x).

4. 3G\ gng G} respectively output Y and yc. The challenger outputs 1 if yz = Cp(x7) ANye =
Cx(x3) otherwise outputs 0.
We say that CP satisifies oracular-D-unpredictability-style-CP anti-piracy, or simply, oracular-D-CP anti-
piracy, for Circ if for any QPT adversary Acp, there exists a trivial adversary ﬂlc”v € Triv (ExpC P CP) and a
negligible function negl(-) it holds that

Pe[Expti %, (1) = 1] < Pr | BT () =1 + negi(h),

where Triv (Expé?,p;p) := Triv! (Expunp CP) U Triv? (Expunp Cp) where for every i € 2],

Triv! (Expgl':p;p) ={(al.,B,C)|B,C: OPT adversaries},

where ﬂtlrw (respectively, A4 trw) is the adversary that on receiveing a state q sends the state to B (respectively, C),

and sends | L)Y(L| to C (respectively, B).

Similarly, we say that CP satisfies D-unpredictability-style-CP anti-piracy, if the same holds as above, but in
the absence of any oracle access to the adversaries.

Moreover, for any noticeable function «(-), we say that a copy-protection scheme CP satisifies o(A)-oracular-D-
unpredictability-style-CP anti-piracy for Circ, if for any QPT adversary Acp, it holds that
unp-cp _
Pr[ExpCP’D,ﬂcp(/\) - 1] < a(A) + negl(A),

for some negligible function negl(-).

18

Remark 3.2. In this work, unless specified otherwise, for most circuit classes with #2(A)-bit input and m(A)-bit output,
especially the ones satisfying some form of puncturable security (see Definition 7.1), we will show 1/ 2m(N) oracular-D-
unpredictability-style-CP anti-piracy for some appropriate distribution D. This is the best possible result since there
always exists a trivial adversary, (“qtlriv’ @tlm-v, Ctlriv) that wins with probability 1/ 2m(A) | where ’qtlriv is as defined in
Definition 3.1, and Q%tln.v just honestly evaluates the circuit on the respective challenge point by running Zval on the state

received, and Ctlﬂ»v outputs a uniformly random guess.

Next, we define pseudorandomness-style copy-protection, which is a generalization of the indistinguishability-based
copy-protection definition defined in [CLLZ21] for pseudorandom functions.

Definition 3.3 (Oracular Pseudorandomness-Style Copy-Protection Anti-piracy). Ler Circ = {Cy }rexc \ be a family
of keyed circuits with n-bit inputs and m-bit outputs, and let CP = (CopyProtect, Eval) be a copy-protection scheme for
Circ with the same syntax and evaluation correctness as in Definition 3.1.

For a distribution D over K) x {0,1}" x {0,1}", consider the following correlated pseudrandomness-style

correlated-pr-cp ()) ponveen the challenger and an adversary Ap = (4,B,0)

copy-protection anti-piracy game Expcp , e

below.

1. The challenger chooses (k, x},x3) + D(1"), generates C < CopyProtect(1*, Cy), and sends C as well as oracle
access to Cy to 4.

2. A4S creates a bipartite state q over registers Rg and R¢. Then, A sends register Rg to B and register R¢ to C.

3. The challenger chooses coin & {0,1}, and for every i € [2] sets y) := Cy(x}), and chooses y! & {0,1}™.

coin

The challenger sends (x7, Y5
C\{x3} 10 C

coin

) and oracle access to C \ {x]} to B and sends (x3,y5°"™) and oracle access to

4. 3\ and cCM3Y respectively output coiny and coin.. The challenger outputs 1 if coiny = coin). = coin
otherwise outputs 0.

We say that CP satisfies oracular-D-pseudorandomness-style-CP anti-piracy for Circ, if for any QPT adversary
Acp, it holds that

—pr- 1
Pr[Expgraia ™ P (A) = 1] < 5 + negl(A),

for some negligible function negl(-).

Next, we introduce a strengthening of pseudorandomness-style copy-protection by adopting the “+-style formulation
introduced by [K'Y25b] in the context of SDE.

Definition 3.4 (Oracular Pseudorandomness-Style Copy-Protection plus Anti-piracy). Let Circ = {Cy }icxc, be a
Jfamily of keyed circuits with n-bit inputs and m-bit outputs, and let CP = (CopyProtect, Eval) be a copy-protection
scheme for Circ with the same syntax and evaluation correctness as in Definition 3.1.

For a distribution D over K, x {0,1}" x {0, 1}", consider the following independent pseudrandomness-style copy-

independent-pr-cp ()) hotween the challenger and an adversary Ap = (4,8,0)

protection-plus anti-piracy game Expqp -, A

below.

1. The challenger chooses (k,x3,x3) < D, generates C < CopyProtect(1*,Cy), and sends C as well as oracle
access to Cy to 4.

2. A4S creates a bipartite state q over registers Rg and R¢. Then, A sends register Rg to B and register R¢ to C.

3. The challenger chooses coing,coing & {0,1}, and for every i € [2] sets y? = Ci(x7), and chooses

v & {0,1}™. The challenger sends (X7, yiom'B) and oracle access to C \ {x]} to B and sends (x3, y;omf) and
oracle access to C\ {x} } 1o C.

19

4. 3N and O3} respectively output coinly and coinl.. The challenger outputs 1 if coinly & coin. =
coing & coing, otherwise outputs 0.

We say that CP satisfies oracular-D-pseudorandomness-style-CP+ anti-piracy for Circ, if for any QPT adversary
Acp, it holds that

+ negl(A),

Pr|Expgipn TP () = 1] <

N —

for some negligible function negl(-).

Relationships. We explore the relationships between the different notions of copy-protection below.

Lemma 3.5. Ifa copy-protection scheme CP satisfies oracular-D-pseudorandomness-style-CP+ anti-piracy (Definition 3.4)
Jor a circuit class Circ, then it also satisfies oracular-D-pseudorandomness-style-CP anti-piracy (Definition 3.3), i.e.,
without the “+” anti-piracy.

Proof of Lemma 3.5. The proof is analogous to that of the implication from CPA*anti-piracy to Diden-bit,ind-msg-CPA
anti-piracy for SDE given in [KY25b, Theorem 6.20].

Let 4, = (4,8, C) be any adversary for oracular-D-pseudorandomness-style-CP anti-piracy (Definition 3.4)
against CP for the circuit class Circ.

It is enough to prove that

Pr[Expeate PP (1) = 1] < Pr[Explgehentem e (1) = 1].

independent-pr-cp+
CP,D,Ap

B and ¢ and coin/, and coin’C be the outputs of B and C, respectively. Let E5 be the event that coin); = coing, E. be
the event that coin/C = coing, and Ejgen-pit be the event that coing = coin.. Clearly, we have

In an execution of Exp (M), let coing and coin be the challenge bits chosen by the challenger for

Pr[ExpZebenee™ PP (1) = 1] = Pr[Es A Ec] + Pr[-Es A —E(]

and

Pr[Exng,;f;'j’;j:'Pr'cp(A) - 1} = Pr[Es A Ec | Eidenbitl-

independent-pr-cp+ ()\)

Next, note that by definition of the security game Expqp) e

Pr[EZB | Eiden—bit] - PI‘[E@ | _'Eiden—bit]

and
Pr[EC ‘ Eiden—bit} = Pr[EC | _‘Eiden—bit]-

Also, clearly we have Pr[Ejgenbit) = 1/2. Thus, by Lemma 2.9, we have

PI'[EQ; AN Ec] + Pr[_'Eg AN _|Ec]
=Pr[Es A E¢ | Eiden-bit] + Pr[7Es A =E¢ | = Eiden-bit] > Pr[Es A E¢ | Eiden-bit)-

Thus, we have

lated-pr- ind dent-pr-cp+
P[P (1) = 1] < Pr[Bpli e (1) = 1],

which completes the proof of Lemma 3.5.
O

Remark 3.6. In Definition 3.3, we considered a correlated version where the challenge points for B and ¢ could be
different, but the challenge coin is the same for both. We can even consider an independent version where the coins for
B and (C are also sampled independently, but note that this version immediately follows from the plus security. Since
our constructions of copy-protection with pseudorandomness-style copy-protection anti-piracy directly satisfy the plus
security, we also obtain the independent version of Definition 3.3 for our constructions.

20

It is easy to see that pseudorandomness-style anti-piracy security implies unpredictability-style anti-piracy security
if m = w(logA).

Lemma 3.7 (Pseudorandomness Implies Unpredictability w(log A)-Bit Circuits). Let Circ be a circuit class with
output length m = w(log A), then for any copy-protection scheme CP for Circ, oracular-D-pseudorandomness-style-CP
anti-piracy implies oracular-D-unpredictability-style-CP anti-piracy.

Proof of Lemma 3.7. Let 4., = (A4,B,C) be any adversary for oracular-D-unpredictability-style-CP anti-piracy
(Definition 3.3) against CP for the circuit class Circ. We construct a reduction adversary R := (4, R, R¢) in the
correlated psedurandomness-style anti-piracy game, where R 4 (respectively, R) on receiveing a state op (respectively,
oc) from R 4, and challenge (x1,y1) (respectively, (x2,12)) and oracle access to Cy \ {x1} (respectively, Cy \ {x2})
runs iy < B(op, x1) (respectively, y5 < C(0c, x2)), and outputs 0 if y/; = y (respectively, 5 = y») and 1 otherwise.
Let coin be the challenge bit in the correlated pseudorandomness-style anti-piracy game, ExpS2tedPr=eP (1) Note

CP,O,R
that by description of (R, R¢), in the coin = 1 event of Exp‘éolg’rg%ed'pr'c"()\), for each i € [2], the probability that

yi =y, is1/2™. Hence,

. . . 2 1
Pr[l + Ry A1+ R | coin=1] =Prly; # y;Vi € 2] | coin = 1] >1-sn=1-5
Next, clearly, the view of the adversaries B and C in the simulated game is the same as in the unpredictability-style

anti-piracy game Expg;;;pﬂcp()\), and hence, conditioned on coin = 0, i.e., y; = Ci(x;) for both i € [2], we get that
!/

; for every i € [2] exactly corresponds to the winning event in the unpredictability-style anti-piracy
(A). Hence,

the event y

uhp-c
game EXpCP'?D,I;Cp

Pr[0 <~ Ry A0 < R | coin = 0] = Prly; = y;Vi € [2] | coin = 0] = Pr[ExpE';;‘f'@fpﬂcp(/\) = 1}.

Combining the last two equations, we conclude that

Pr [Explist, (A) = 1] +1- 7L
- .

Pr |:Expcorre|ated-pr-cp ()\) _ 1:| > (1

CP,D,R
Since we assume that CP satisfies oracular-D-pseudorandomness-style-CP anti-piracy, there exists a negligible
function negl(+) such that

Pr {Expcorrelated-pr-cp ()\) _ 1} <

CP,D,R + neg|()t)

N —

Combining last equation with (1), we conclude that,

Pr[Expiat, (M) = 1] +1- 5
2

1/2+negl(A) > Pr[Explip ™ P(A) = 1] >

Hence, we conclude that,
Pr {EXPEEEZCP()‘) = 1} < 1/2"71 4 2negl(A),
which is negligible in A since m(A) € w(log(A)). O

Remark 3.8. If the output length m of the circuit class Circ satisfies m < O(log(A)), then for any copy-protection scheme
CP for Circ, oracular-D-pseudorandomness-style-CP anti-piracy implies a(A)-oracular-D-unpredictability-style-CP
anti-piracy for some non-negligible but non-trivial bound & (A).

21

3.2 Definitions of Unclonable Puncturable Obfuscation
Next, we recall the definition of the main tool used in this work to achieve our main results.

Definition 3.9 (Unclonable Puncturable Obfuscation (UPO) [AB24]). A UPO scheme UPQ for the circuit class
Circ = {C: {0,1}fcn — {0,1}ceut} is a pair of two algorithms (O6f, Eval).

obf (1)‘, C) — C: The obfuscation algorithm is a QPT algorithm that takes a security parameter 1" and a circuit
C € Circ, and outputs a quantum state C.

Eval (C,x) — y: The evaluation algorithm is a QPT algorithm that takes a quantum state C and an input x € {0,1} en,
and outputs a value V.

Evaluation correctness: For every C € Circ and x € {0,1}n, we have
Pr [Zval (C,x) = C(x) | C + 06f(1*,C) | =1 — negl(A).
We say that it satisfies perfect correctness if the above probability is 1.

Evaluation correctness implies the reusability of the quantum obfuscated state p thanks to the gentle measurement
lemma.
To define the security notions of UPO, we first introduce notation for punctured circuits.

Definition 3.10 (Punctured Circuit). Let C : {0,1}en — {0,1}fccut e a circuit. Let xg,xc € {0,1}fn and
v, ye € {0, 1} o, We define the punctured circuit C*[x5, x¢, Y3,y c| as follows:

s Ifxg # x¢,

Clx), x € {0,1}en\ {xs,xc}
C*'lxs, xc,ys,ycl(x) =< ys, x=x4
yCr X =Xc

e Ifxg = x¢,

Clx), x€ {01} \ {xs} .

Yz, X =X

C*[xs, xc,ym,ycl(x) = {

Note that there exists a canonical algorithm Program ,,onical t0 perform the above-described puncturing for any
circuit class Circ, i.e., given a circuit key/index from Circ, Program ,,onical OUtputs the circuit that has C hardcoded
using which it outputs according to C*[xg, X, Y5, Yc)-

First, we recall two security notions introduced in [AB24]: UPO security and generalized UPO security.13

Definition 3.11 (D-Generalized UPO Security [AB24]). Let UPO = (O5f, Eval) be a UPO scheme for the circuit
class Circ = {C : {0,1}fen — {0,1}fceut}. Ler D be a distribution over {0,1}n x {0,1}en. We consider the
D-generalized UPO anti-piracy game Expﬁe;&'g?ﬂcp (A) between the challenger and an adversary A, = (A, B, C)
below.
1. On input 1, 4 sends C € Circ together with two circuits pg : {0,1}fn — {0,1}cut and pe : {0,1} en —
{0, 1}&0“t to the challenger.

2. The challenger generates coin < {0,1}, (xg, x¢) < D, and generates C as follows:

s Ifcoin =0, C « 06f(1*,C).

13In [AB24], UPO security is introduced first, followed by its generalization, generalized UPO security. In contrast, for convenience of presentation,
we adopt the reverse order: we first define generalized UPO security and then present UPO security as a special case.

22

s Ifcoin =1, C < 06f (1", C*[xg, xc, ws(x3), ue(xe)])-
The challenger sends C to 4.
3. A creates a bipartite state q over registers Rg and R¢. Then, 4 sends register Rg to B and register R¢ to C.
4. The challenger sends x5 and x . to B and C, respectively.

5. B and C respectively output coinly and coinl.. The challenger outputs 1 if coinly = coin). = coin otherwise
outputs Q.

We say that UPOQ is original D-generalized UPO secure if for any QPT adversary Acp, it holds that

- 1
Pr[Expgegofg,;cp(A) = 1} < 5 +negl(A).

Definition 3.12 (D-UPO Security [AB24]). D-UPO Security is defined similarly to D-generalized UPO Security
Definition 3.11 except that g and o are limited to be circuits that output L on all inputs.

Example 3.13 (Examples of distribution D). In this work, we mainly focus on the following two types of distributions:
product distributions and diagonal distributions.

* We say that a distribution D over {0, 1}‘ein x {0, 1} is a product distribution if it can be written as D = Dy X D,
where Dg and D, are distributions over {0, l}zci". As a special case of product distributions, we write 7 to mean
the uniform distribution over {0, l}éci" x {0, l}zci".

* We say that a distribution D over {0,1}%n x {0,1}‘n is a diagonal distribution if its support belongs to
{(x,x) : x € {0,1} e }. As a special case of diagonal distributions, we write D¢, to mean the uniform diagonal
distribution that generates (x, x) for uniformly random x < {0,1}%n.

In this paper, we introduce a new security notion of UPO which we call generalized UPO " security. . This extends
the generalized UPO security Definition 3.11 by adopting the “4-style formulation introduced by [KY25b] in the
context of SDE.

Definition 3.14 (D-Generalized UPO " Security). Let UPO = (06f, Eval) be a UPO scheme for the circuit class
Circ = {C : {0,1}fen — {0,1}fct}. Let D be a distribution over {0,1}'n x {0,1}'n. We consider the

gen-upoplus (A) between the challenger and an adversary Acp = (4, B, C) below.

D-UPOT anti-piracy game Expipo » e

1. On input 1*, 4 sends C € Circ together with two circuits pig : {0,1}n — {0,1} et and pe : {0,1}en —
{0,1} 0wt 10 the challenger.

2. The challenger generates coing < {0,1}, coing < {0,1}, and (x3,x¢) < D, and sets as follows:
ys0 = C(xs), ys1:=ps(xs), yco:=Clxc), yca:=pc(xc)
The challenger generates pc <— 06f (1%, C*[xg, x¢, Y8,coing, Y coine]) and sends pc to A.
3. A creates a bipartite state q over registers Rg and R¢. Then, 4 sends register Rg to B and register R¢ to C.
4. The challenger sends x5 and x to B and C, respectively.

5. B and C respectively output coinly and coin.. The challenger outputs 1 if coinly @ coinl. = coing & coing
otherwise outputs 0.

We say that UPQ is D-UPO™ secure if for any QPT adversary Acp, it holds that

- 1
Pr[ExpEae®(A) = 1] < 5 +negl(A),

23

In some applications, we assume that UPO also satisfies security as indistinguishability obfuscation (iO). For clarity,
we define what it means for a UPO to satisfy iO security. Note that iO security can be generically added by first applying
i0, followed by UPO.

Definition 3.15 (iO Security). We say that a UPO scheme UPO = (Obf, Eval) satisfies iO security if for any PPT
Sampler and QPT adversary A, the following holds:
IfPr[Vx Co(x) = C1(x) A |Co| = |Cq| | (Co,Cy,aux) < Sampler(1})] = 1 — negl(A), then we have

Advi%/i,()\) = ‘Pr [ﬂl(ob'f(l’\, Cop),aux) = 1] (Cy, Cq, aux) « Sampler(l)‘)}
—Pr [ﬂ(oﬁf(l)‘, Cy),aux) =11 (Cp, Cq,aux) <« Sampler(l)‘)} ’ < negl(A).

The following lemma is easy to prove along the lines of the composition theorem proven in [AB24, Theorem 12].

Lemma 3.16. Let Circ = {C : {0,1}‘n — {0,1}¢eout} be a circuit class and D be a distribution over {0,1}dn x
{0, 1}gci". For any X € {D-UPO, D-generalized UPO, D-generalized UPO™ }, if there exist a secure iO scheme and a
UPO scheme for the circuit class Circ that satisfies X security, there exists a UPO scheme for the circuit class Circ that
satisfies both iO security and X security.

The above lemma allows us to assume, without loss of generality, that UPO (under any flavor of security) satisfies
i0 security , provided that iO exists.

We show that for any product distribution D = Dg x D, D-generalized UPO*security implies D-generalized UPO
security, assuming that the UPO satisfies iO security and there exist keyed injective Dg- and D--one-way functions.
Theorem 3.17. Let UPO = (0bf, Eval) be a UPO scheme for the circuit class Circ = {C : {0,1}fen — {0,1}fcout},
Let D = Dy X D¢ be a product of two distributions Dg and D¢ over {0, 1}K°i". If UPO satisfies D-generalized

UPO™ security and iO-security, and there exist keyed injective Dg- and Dy one-way functions, then UPO also satisfies
D-generalized UPO security.

Proof of Theorem 3.17. We note that the proof is similar to the implication from CPA T anti-piracy to Diden-bit,ind-msg "
CPA anti-piracy for SDE given in [KY25b, Theorem 6.20].

Let 4., = (A4, B, C) be any adversary for D-generalized UPO security of UPO. Consider the following hybrid
experiments.

Hybg: This is Expfjegag?ﬂcp (A).

We have
Pr[Hybg = 1] = Pr|Exp§g brs, (A) = 1].
Hyb;: Same as Hyby except that if coin = 0, C is generated as C < 06f (1%, C*[x3, x¢, C(x3),C(xc)]).
From the 10 security of UPO, we have
|Pr[Hyby = 1] — Pr[Hyb; = 1]| = negl(A).

We below prove that

Pr{Hyb; = 1] < Pr[Expfpairae(A) = 1] + negl(A).

In an execution of Explgf;(')”gogcl;'s(/\), let coing and coin be the challenge bits chosen by the challenger for 8 and ¢

and coin; and coin. be the outputs of B and ¢, respectively. Let Eg be the event that coin; = coing, E be the event
that coin’C = coin, and E;gen-pit be the event that coing = coin,. Clearly, we have

Pr [Expﬁe;gj;f’gc'ss()\) = 1} = Pr[Es A E¢] + Pt[~Ex A ~E¢]

and
Pr[Hybl = 1] = Pr[Eg; NE¢| Eiden—bit]-

Here, we prove the following claim:

24

Claim 3.18. It holds that

Pr[Es | Eiden-bit] negi(n) PI[Es | ~Eiden-bit]-
and

Pr(E¢ | Eiden-bit] ~negi(1) PI[Ec | ~Eiden-bit]-

We first finish the proof of Theorem 3.17 assuming Claim 3.18. It is clear that we have Pr[Eigenbit)] = 1/2. Thus,
by Lemma 2.9, we have

PI‘[qu A Ed + Pr[ﬂqu A\ _‘EC]
~negl(A) PT[Es A Ec | Eiden-bit] + Pr[~Es A =E¢ | =Eiden-bit] > Pr[Es A Ec | Eiden-bit]-

This implies
Pr [ExpEg orn®(1) = 1] + negl(A) > PrHyby = 1].

Thus, we have
Pr | Expiorne, (A) = 1] < Pr[Expfoiien’® (1) = 1] + negl(A).
Since we assume that UPO satisfies D-generalized UPO ™ security, Pr [Expﬁegajip;gclss (A) = 1} = negl(A). Thus,
Pr [Explgf;(';zsp()\) = 1} = negl(A). This completes the proof of Theorem 3.17.
We are left to prove Claim 3.18.

Proof of Claim 3.18. We only show the proof for the first equality since the other can be proven similarly.
Let Gen be a generator for keyed injective D--one-way function. We consider the following sequence of hybrids:

Hybg: This hybrid works similarly to Explgje;ag?zss(/\) conditioned on Ejgen.pit, i.€., coing = coin., and outputs 1 if

coing = coinly.
By definition, we have

Pr[Hyby = 1] = Pr[Es | Eigen-bit]-

Hyby: This is identical to Hyby except that the challenger samples F <~ Gen(1"), computes z := F(x.), and generates
C as follows:

E Y Oﬁf(l)\/ Cé)[x@/yﬂi,coin@]) coinC =0
06f (1, C1[x8,2¢, Y,coing, V1)) coine =1
where
C(x), X # X
C(/)[x%yﬂi,coin,g](x) = { () 7 Xp
YB,coings X = XB
and!

C(x), x#xaNF(x)#zc
Ci [xﬂszryQ%,COinrg/yC,l](x) = YB,coings, X = X .
Y, F(x) = z¢
Since y 0 = C(x¢), when coine = 0, Cj[X3, Y,coin,] is functionally equivalent to C* [, X¢, Y3 coing, Y c,0]. Moreover,
by the injectivity of F, C} [Xs, Z¢, Y8,coing, Y o,1] is functionally equivalent to C* (X, X, Y3 coing, Y c,1] With overwhelming
probability. Thus, by the iO security of UPO, we have
|Pr[Hyby = 1] — Pr[Hyb; = 1]| < negl(A).

4For completeness, we define Cl ¥, 2¢,Y,coings Y1) (X) 10 be Y coin, When x satisfies both x = xg and F(x) = z¢, though this case can be
defined arbitrarily since we have F(xg) = z. only with a negligible probability.

25

Hyb,: This is identical to Hyb; except that ¢ is generated as
C+ Oﬁf(l’\, C(/)[xﬂr]/ﬂcoin@])
regardless of the value of coin.

When coin, = 0, nothing is changed. When coinc = 1, by the injectivity of F, Cj[xs,¥scoin,] and
C{ [x3,zc, YB,coing yc,l] differ only on a single point x - with overwhelming probability. Moreover, given descriptions
of these two circuits, it is computationally infeasible to find x. by the D,-one-wayness of F. Since the iO security
implies differing-input obfuscation security in the single-differing input setting [BCP14], we have

|Pr[Hyb; = 1] — Pr[Hyb, = 1]| < negl(A).

Hybs: This is identical to Hyb, except that we choose coing and coin. conditioned on coing # coin. instead of on
coing = coing.

Note that the marginal distribution of coing is uniform in both Hyb, and Hybs and no information of coin is given to
B. Thus, the above modification does not change the view of B, and thus we have

Pr[Hyb, = 1] = Pr[Hybs = 1].
Hyby,: This hybrid works similarly to Expﬁeﬁagfgclss()t) conditioned on —E;gen.pit, i.€., coing # coing, and outputs 1
if coing = coinly.
By repeating similar arguments to those from Hybg to Hyb, in the reversed order, we have

|Pr[Hyb; = 1] — Pr[Hyb, = 1]| < negl(A).

Also, we clearly have
Pr[Hyby = 1] = Pr[Es | =Eiden-bit)-

Combining the above, we conclude

Pr[ETB ‘ Eiden—bit} znegl(/\) Pr[EiB | _‘Eiden—bit}'

4 Strong Monogamy Property of Coset States with Auxiliary Inputs

In this section, we introduce a new variant of the strong monogamy property of coset states that considers certain
auxiliary inputs, and prove it.
Notations. For a subspace A C F?, we use the following notations introduced by [CLLZ21, AKL1T22].

« ALt ={beF}:Vac A, (ab) =0}

* Cang is a function such that for any s € IF4, Cany4 (s) is the lexicographically smallest vector contained in A + s,
which we call the canonical representative of coset A + s. For any s’ € A + s, we have Can 4 (s’) = Cany(s).
Can is polynomial-time computable given the description of A.

* CS(A) = {Cany(s) : s € F5}.

26

For a subspace A C IF} and (s, t) € Fj x IF}, we define the coser state | As ;) as

1
|Ag) = —— Y (=)@ |a+5).
Ak

By applying H®" to |As), we obtain |A#S>, where H is the Hadamard gate (thus H®" is the Quantum Fourier
Transformation over IF7.)

When the context is clear, we often abuse notation by writing A to refer to its description, represented as a tuple of
basis vectors. We often write iO(A + s) to denote an obfuscation by iO of the program that verifies membership in
A+s.

We remark the following easy lemma, which is obvious from the definitions.

Lemma 4.1. For a subspace A C 4, s € CS(A), and s’ € FY, the following two conditions are equivalent:
1. s=5¢

2.8’ € A+sandCany(s') =5

Strong monogamy property. An information-theoretic property known as the strong monogamy property of coset
states (Theorem 4.4) was conjectured by Coladangelo et al.[CLLLZ21] and later proven by Culf and Vidick[CV22].
Coladangelo et al. [CLLZ21] also extended this property to a computational version using iO. In this paper, we introduce
a further variant of the property that considers an indistinguishability game instead of a search game, and, more
importantly, allows the adversary to receive certain auxiliary inputs.!> The formal statement is given below:

Theorem 4.2 (Computational Strong Indistinguishability Monogamy Property of Coset States with Simulatable
Auxiliary Inputs). Let iO be iO. Let n € N be a polynomial in A. Let Aux = (AuxSetup, AuxGenz, AuxGen) be a
tuple of QPT algorithms with the following syntax.

ﬁluxjetup(l)‘): This algorithm takes a security parameter 1, and outputs a classical public parameter pp.

AuxGen (pp, A, rx) where X € {B, C}: This algorithm takes a public parameter pp, a description of a subspace
A CTF5, andry € {0,1}", and outputs a pair of classical strings (z1,x,22,x)-

We assume that, the first coordinate of the output of AuxGen . (pp, A, tx) can be statistically simulated from pp alone,
without using (A, rx). Thatis, for X € {B, C}, there exists a (not necessarily polynomial-time) quantum algorithm Simy
such that for any subspace A C % and any rx € {0,1}", the following distributions are statistically indistinguishable:

pp < AuxSetup(1) } { pp « AuxSetup(1*) }
1) ~ O E) .
{(pp 1x) (Z10022.x) Auxgen (pp, A, 7x) (PP, 21,x) z1,x < Simx(pp)

comp-strong-ind-moe-aux

{0, A, Ao (A) between a challenger and an adversary Amoe =

Consider the following experiment Exp
(4,8, 0).

1. The challenger picks a uniformly random subspace A C F of dimension n/2, and two uniformly random
canonical representatives (s,t) € CS(A) x CS(AL). The challenger picks r3,1¢c < {0,1}", and generates
pp + AuxSetup(1"), (z1,8,22,3) AuxGeng(pp, A, 13), and (z1,¢,z2,c) < AuxGen(pp, A, r¢). It sends
|Ast), iO(A +35), iO(A+ +t), pp, 21,3, and z1 ¢ to A.

2. A creates a bipartite state q over registers Rg and Rc. Then, 4 sends register Rg to B and register R¢ to C.
3. The challenger sends (A, 13,2y 5) to Band (A,rc,22¢) to C.

4. B and C respectively output by and be. The challenger outputs 1 if by ® be = (r5,s) ® (rc,t) and outputs 0
otherwise.

15 An indistinguishability version without auxiliary inputs was already introduced in [KY25b].

27

Assuming iO is a secure iO and there exist OWFs, for any QPT adversary Amoe = (4, B, C), it holds that

comp-strong-ind-moe-a _ 1
Pr[Bxpfg) = 1] < 5+ negl(),

Remark 4.3. We do not need to explicitly provide (A, rz) to B and (A, r.) to C, as these can be included in z5 4 and
zp ¢ without loss of generality. However, we present them explicitly here for clarity.

We prove Theorem 4.2 in Section 4.1.

4.1 Proof of Theorem 4.2

In this subsection, we prove Theorem 4.2. Our proof builds on the strong monogamy property of coset states [CLLZ21,
CV22], which we gradually extend to eventually establish the desired result.
We begin by recalling the strong monogamy property of coset states.

Theorem 4.4 (Strong Monogamy Property of Coset States [CLLZ21, CV22]). Let n € IN be a polynomial in A.

Consider the following experiment Expi;n:z:g-moe (A) between a challenger and an adversary Amoe = (4, B, C).

1. The challenger picks a uniformly random subspace A C T} of dimension n/2, and vectors (s, t) < Fy x . It
sends |As) to A.

2. A creates a bipartite state q over registers Rg and R¢. Then, 4 sends register Rg to B and register R¢ to C.
3. The challenger sends A to both B and C.

4. Band C respectively output s and t . The challenger outputs 1 ifsg € (A +3s) andts € (At +t), and outputs
0 otherwise

For any (not necessarily polynomial-time) quantum adversary Amoe = (4, B, C), it holds that
t -
Pr{Exp;:;:g MOE(N) = 1} < negl(A).

Remark 4.5. In Theorem 4.4, the pair (s, t) is sampled uniformly from the entire space IF; x IF}, rather than from
CS(A) x CS(A™1) as in Theorem 4.2. Although both versions are equivalent at this point, this choice is motivated
by the fact that the proof of the extended version of the property, presented in Corollary 4.6, appears to rely on (s, t)
being uniformly distributed over IF} x IF%. The discrepancy in the distribution of (s, t) is resolved later in the proof,
specifically during the game hops from Hyb, to Hyb, in the proof of Theorem 4.2, given at the end of this subsection.

[CLLZ21] showed that Theorem 4.4 implies the following corollary, which we refer to as the extended strong
monogamy property of coset states. In this variant, the adversary 4 additionally receives the descriptions of a uniformly
random subspace B C IF} of dimension 371 /4 that contains A, and a uniformly random subspace C C A of dimension
n/4, along with the vectors s + v and ¢t + w, where v + B and w < C-. The differences from Theorem 4.4 are
highlighted in bold red text.

Corollary 4.6 (Extended Strong Monogamy Property of Coset States [CLLZ21]'%). Ler n € IN be a polynomial in

ex-strong-moe

A. Consider the following experiment Exp Amoe (A) between a challenger and an adversary Amoe = (4, B, C).

1. The challenger picks a uniformly random subspace A C F} of dimension n/2, a uniformly random subspace
B of dimension 37 /4 that contains A, and a uniformly random subspace C C A of dimension 7 /4. The
challenger picks vectors (s, t) < 4 x F4 and (v,w) < B x C*.

It sends | Ast), the descriptions of B and C, and vectors s + v and t +w fo 4.

16The reduction from Corollary 4.6 to Theorem 4.4 is provided in Lemma C.16 of the arXiv version of [CLLZ21]: https://arxiv.org/pdf/
2107.05692.

28

https://arxiv.org/pdf/2107.05692
https://arxiv.org/pdf/2107.05692

2. A creates a bipartite state q over registers Rg and R¢. Then, A sends register Rg to B and register R¢ to C.
3. The challenger sends A to both B and C.

4. Band C respectively output s and t . The challenger outputs 1ifsg € (A +5s) and te € (A+ +t), and outputs
0 otherwise

For any (not necessarily polynomial-time) quantum adversary Amee = (A4, B, C), it holds that

Pr[Exp;:::r°ng'm°e(A) = 1} < negl(A).

In Corollary 4.6, note that the statement remains equivalent even if the goals of 8 and C are modified to output
Canx(s) and Can 4. (1), respectively.!” With this observation, the following corollary follows immediately by applying
the simultaneous quantum Goldreich-Levin lemma (Lemma 2.8) to Corollary 4.6. The differences from Corollary 4.6
are highlighted in bold red text.

Corollary 4.7 (Extended Strong Indistinguishability Monogamy Property of Coset States). Let n € IN be a

polynomial in A. Consider the following experiment Exp;:::rong_ind'moe (A) between a challenger and an adversary

/qmoe = (/q/ Q;/ C)

1. The challenger picks a uniformly random subspace A C 3 of dimension n/2, a uniformly random subspace B
of dimension 3n /4 that contains A, and a uniformly random subspace C C A of dimension n/4. The challenger
picks vectors (s,t) € F3 x FJ and (v,w) < B x C*.

It sends | Ast), the descriptions of B and C, and vectors s + v and t + w to A.
2. A creates a bipartite state q over registers Rg and R¢. Then, 4 sends register Rg to B and register R¢ to C.
3. The challenger chooses 5,7 < {0,1}". The challenger sends (A, rz) to B, and (A, r¢) to C.

4. Band C respectively output b and be. The challenger outputs 1if by © b = (rs,Cana(s)) © (re, Can o (1))
and outputs 0 otherwise.

For any (not necessarily polynomial-time) quantum adversary Amoe = (4, B, C), it holds that

- -ind- 1
Pr [Expzjzrong in moe(/\) = 1} < 3 + negl(A).

Next, we consider a variant of the above property in which 4, B, and (receive auxiliary inputs as in Theorem 4.2,
but do not receive the obfuscated programs. The differences from Corollary 4.7 are highlighted in bold red text.

Corollary 4.8 (Extended Strong Indistinguishability Monogamy Property of Coset States with Simulatable
Auxiliary Inputs). Let n € N be a polynomial in A. Let Aux = (AuxSetup, AuxGen.z, AuxGen) and (Simsz, Sim:) be
(not necessarily polynomial-time) quantum algorithms satisfying the conditions in Theorem 4.2. Consider the

ex-strong-ind-moe-aux (A) between a challenger and an adversary Amoe = (4,8, C).

Jollowing experiment Exp A, Amoe

1. The challenger picks a uniformly random subspace A C I3 of dimension n/2, a uniformly random subspace B
of dimension 3n /4 that contains A, and a uniformly random subspace C C A of dimension n/4. The challenger
picks vectors (s, t) € F4 x P4 and (v, w) < B x C*. The challenger picks 75, 7. < {0,1}", and generates

pp Auxsetup(1*), (21,8, 22,3) < AuxGeny(pp, A,75), and (z21,¢,22,¢c) < AuxGen(pp, A, 7¢)-
It sends | Ast), the descriptions of B and C, vectors s + v and t + w, pp, z1,4, and z1 (to 4.

2. A creates a bipartite state q over registers Rg and R¢. Then, A sends register Rg to B and register R¢ to C.

3. The challenger sends (A, 13,25) to B, and (A, r¢,z5,0) to C.

17This is because, given the description of A, one can efficiently compute Can 4 (s5) = Cany(s) and Can 41 (t.) = Can, 1 (t) fromss € (A +5)
and to € (A* + 1), respectively.

29

4. B and C respectively output by and bc. The challenger outputs 1 if by & b = (rs, Cana(s)) & (re, Can g1 (1))
and outputs 0 otherwise.

For any (not necessarily polynomial-time) quantum adversary Amoe = (A, B, C), it holds that

-st -ind- - 1
Pr [Bpfiions " (1) = 1] < 5 4 negl(2).
Proof of Corollary 4.8. Let Amoe = (A4,B,C) be a (not necessarily polynomial-time) quantum adversary as in
Corollary 4.8. Then we construct a (not necessarily polynomial-time) quantum adversary 4;,,. = (4',8',) as in
Corollary 4.7 as follows:

4’ Upon receiving (|Ast), B, C,s + v, t + w), it generates pp + AuxSetup(1), 215 < Simz(pp), and z1 » <
Simc(pp). Then itruns 4 oninput (|As¢), B, C,s + v, t +w, z1 5,21 ¢) to obtain a bipartite state g over registers
Rg and Re. It sends z; 5 and g[Rg] to B/, and z1 » and g[R.] to C'.

#': Upon receiving (z1 3, ¢[Rs]) from 4" and (A, r5) from the challenger, it samples (z1,22) < AuxGeny(pp, A, 7'5)
conditioned on z; = z1 4 (using unbounded computational power), and sets z g = 2,18 Finally, it runs B on
input (¢[Rs], A, 78,22 5) to obtain bg, and outputs bsg.

C’: Upon receiving (z1,¢, g[R¢]) from 4" and (A, r¢) from the challenger, it samples (z1,22) «— AuxGen(pp, A, 7¢)
conditioned on z1 = zj ¢ (using unbounded computational power), and sets zp » = 5.1 Finally, it runs C on
input (¢[R¢], A, r¢, z2,¢) to obtain b, and outputs b

By the simulatability condition, for any A and r, with overwhelming probability over the choice of pp < ﬂu;@Setup(l’\),
Simx(pp) statistically simulates the first coordinate of AuxGen, (pp, A,7x) for X € {B,C}. Therefore, the joint

distribution of (21, 22 5, 21 ¢, Z,c) generated by A/, is statistically close to that in ExpZ< Sirongrind-moe-aux(3) A pqy

AuxGen,Amoe
ex-strong-ind-moe-aux .
AuGen, Ao (A) for Amoe. Therefore, the difference

between Pr [Expeﬂ’;;tﬂ;;';eg'i”d'm"e'aux(A) = 1} and Pr {Exp;’?tmng'ind'moe(/\) = 1} is negligible. Hence, Corollary 4.8

follows directly from Corollary 4.7.

from this, 4/, perfectly simulates the execution of Exp

O

We reduce Theorem 4.2 to Corollary 4.8 using a technique similar to that of [CLLZ21], which upgrades the strong
monogamy property of coset states (Theorem 4.4) to its computational analogue. This technique relies on a result
by Zhandry [Zhal9], which shows that, assuming the existence of OWFs, any 1O also serves as a subspace-hiding
obfuscator.

Below, we state the definition of a subspace-hiding obfuscator.

Definition 4.9 ([Zhal9]). A subspace hiding obfuscator (shO) for a field F and dimensions dy, d1 is a PPT algorithm
shO satisfying the following:

Syntax. shO rakes as input the description of a linear subspace S C " of dimension d € {dy,d1} and outputs a
classical circuit S.

Correctness. For any linear subspace S C " of dimension d € {dy,d;}, it holds that
Pr[Vx € F", S(x) = $(x) : 5 + shO(S)] > 1 — negl(A)
where S(x) is the function that decides membership in S.
Security. Consider the following game between an adversary and a challenger, indexed by a bit b.

— The adversary submits to the challenger a subspace Sg of dimension d

181¢ 21,4 is not in the support of the first coordinate of the output of AuxGen(pp, A, r4), the algorithm simply aborts.
191¢ z1,¢ is not in the support of the first coordinate of the output of AuxGen (pp, A, r¢), the algorithm simply aborts.

30

— The challenger chooses a random subspace S1 C " of dimension di such that So C Sy. It then runs
S < shO(Sy), and gives S 1o the adversary

— The adversary makes a guess b’ for b.
For all QPT adversaries, it holds that | Pr[b’ = b] — 1/2| < negl(A) in the above game.

Lemma 4.10 ([Zha19]). If OWF's exist, then any iO, appropriately padded, is also a subspace hiding obfuscator for
field F and dimensions dy, dy, as long as |F|"~% is exponential.

Remark 4.11. The original statement in [Zhal9] assumes the existence of injective OWFs, but it is easy to see that keyed
injective OWFs (Definition 2.5) suffice, which are known to exist if iO and OWFs exist [BPW 16].

Then we prove Theorem 4.2.

Proof of Theorem 4.2. Let shO be a subspace hiding obfuscator for field IF and dimensions dy = n/2 and d; = 3n/4.
Such a subspace hiding obfuscator exists assuming the existence of iO and OWFs by Lemma 4.10.
For a QPT adversary Amoe = (4, B, C), we consider the following sequence of hybrids.

Hybg: This is the original security experiment Expf(%mﬂi';;z"g'i"d_moe_aux()\) described in Theorem 4.2.

Hyby: This is identical to Hyb, except that the hybrid outputs 1 if bg @ b = (rg, Cana(s)) @ (rc, Can 41 (t)) and
outputs 0 otherwise.

Since s € CS(A) and t € CS(A'), we have Can4(s) = s and Can 4/ (t) = t. Thus, we clearly have

Pr[Hyb; = 1] = Pr[Hyby = 1].

Hyb,: This is identical to Hyb; except that s and t are sampled uniformly from IF} instead of CS(A) and CS(A™).
Note that the only information of (s, t) given to the adversary is |As), iO(A +s), and iO(A+ + t). For
any (s,t) € F} x F}, |As) = ‘ACanA(s),CanAL(t)>’ and iO(A + s) and iO(A* + t) are computationally

indistinguishable from iO(A + Cany(s)), and iO(AL + Can 4. (t)), respectively, by the security of iO.
Moreover, we have Cang(s) = Cana(Cany(s)) and Cany, (t) = Canyi (Canyi(t)). This means that the
probability to output 1 only negligibly changes even if we modify Hyb, by replacing s and t with Can 4(s) and
Can 4. (t), respectively. For uniformly random (s, t) € Fj x IF}, (Cany(s), Can 4. (t)) is uniformly random
over CS(A) x CS(A'). Thus the game obtained by replacing s and ¢ in Hyb, with Can(s) and Can 41 () is
identical to Hyb;. Thus, we have

|Pr[Hyb, = 1] — Pr[Hyb; = 1]| < negl(A).

Hybs: This is identical to Hyb, except that the first obfuscated program iO(A + s) given to 4 is replaced with
iO(shO(A)(- —s)) where shO(A)(- — s) is a program that takes x € IF" as input and outputs shO(A)(x —s).

By the correctness of shO, shO(A) (- — s) is functionally equivalent to the membership testing program of A + s
with an overwhelming probability. Thus, by the security of i, we have

|Pr[Hybs = 1] — Pr[Hyb, = 1]| < negl(A).

Hyby: This is identical to Hybs except that the first obfuscated program iQO(shO(A)(- —s)) given to 4 is replaced
with iO(shO(B)(- —s)) where B C IF} is a uniformly random subspace of dimension 31 /4 that contains A.

By the security of shO, we have

|Pr[Hyb, = 1] — Pr[Hyb; = 1]| < negl(A).

31

Hybs: This is identical to Hyb, except that the first obfuscated program iO(shO(B)(- —s)) given to 4 is replaced
with iO(shO(B)(- — (s + v))) for a uniformly random element v € B.

By the correctness of shO, shO(B)(- —s) and shO(B)(- — (s + v)) are functionally equivalent with an
overwhelming probability. Thus, by the security of iO, we have

|Pr[Hybs = 1] — Pr[Hyb, = 1]| < negl(A).

Hybg: This is identical to Hybs except that the second obfuscated program i(’)(AL +) given to 4 is replaced with
iO(shO(C*) (- — (t+w))) where C is a uniformly random subspace of A of dimension /4 and w € C* is a
uniformly random element of C.

By a similar argument to the hops from Hyb, to Hybs, we have
|Pr[Hybg = 1] — Pr[Hybs = 1]| < negl(A).

ex-strong-ind-moe-aux

One can see that Hyby is identical to Expy;, ~°" (A) except that 4 is given iO(shO(B)(- — (s +

v))) and iO(shO(CL)(- — (t +w))) instead of (B,C,s +v,t +w). Since iO(shO(B)(- — (s +v))) and
iO(shO(CL)(- — (t +w))) can be efficiently generated from (B, C,s + v, t + w), a straightforward reduction
to Corollary 4.8 gives us the following:

Pr[Hybg = 1] < 1/2+ negl(A).

Combining the above, we can conclude that for any QPT adversary 4moe,
Pr[Hyby = 1] < 1/2+ negl(A),

completing the proof of Theorem 4.2. O

5 Construction of UPO

We prove the following theorem.

Theorem 5.1. Assuming the existence of polynomially secure iO and the LWE assumption, for any constant ¢ > 0
and any polynomials linp and Loy, there exists a UPO for the circuit class Circ = {C : {0, 1}£‘”P — {0, 1}£°“t} that
satisfies D-generalized UPO™ security and D-generalized UPO security for any QPT-samplable product distributions
D = Dg X D¢, where Dg and D have min-entropy at least A°.

Moreover, if Dg and D¢ are uniformly random, the existence of OWFs (in place of the LWE assumption) together
with iO suffices.

5.1 Construction

Let 1, £inp, and £, be polynomials in the security parameter A.
We use the following building blocks.

* 10 for polynomial size classical circuits iQO.
* PPRF PPRF = (F, Puncture) with the domain {0, 1} and the range {0, 1}‘eut.

We remark that additional cryptographic primitives are used in the security proof, as described in the relevant subsections.
We below construct a UPO scheme UPO = UPO.(06f, Eval) for the circuit class Circ = {C : {0,1}fm —

{0, 1}éout}.
UPO.05f(1%,C):

32

Py[Cme, C,K](a, x)
Hardwired constant: A description of a boolean circuits Cpc and C, and a string K.
Input: (a,x).
1. If Cmc(a) = 0, output L. Otherwise, go to the next step.
2. Output Fg(x) @ C(x).

Figure 5: The description of the circuit P;.

P2[Cire, K] (a, x)
Hardwired constant: A description of a boolean circuits Cnﬁc and a string K.
Input: (a,x).
1. If Ck_(a) = 0, output L. Otherwise, go to the next step.
2. Output Fg(x).

Figure 6: The description of the circuit P;.

* Generate a uniformly random subspace A C F} of dimension 7, and two uniformly random elements
(s,t) € CS(A) x CS(A™1), where n is specified later.

* Define circuits Cpc := iO(A +5) and C. i= iO (AL + t).
* Generate a key K < {0,1}" for PPRF.

+ Generate two obfuscated circuits P < iO(Py[Cme, C,K]) and Py < iO(P;[Cihe, K]), where P; and P,
are the circuits described in Figure 5 and Figure 6.

« Output C == (|Asy), Py, P2).
UPO.Eval (C, x):

e Parse ¢ = (p, 131, 132), where p is a quantum state, and 131 and 132 are interpreted as descriptions of circuits.

e Let Eq and E; be unitaries that respectively work as follows:
|z1) |z2) ¥ |21) ‘zz @ﬁl(zl,x)> and |z1) |z2) ¥ |21) |22 @ﬁz(zl,x)>

for any z; € {0,1}" and z, € {0,1}feut,

Apply E{ to p ® ‘0€°“t> and measure the second register to obtain an outcome y1. Then, trace out the

second register and obtain the state p’.

Apply E; to H*"p' @ ‘0£°“t> and measure the second register to obtain an outcome 5.
e Output Y :=y; @ yo.
Perfect correctness. We prove
Pr [UPO.Zval (C,x) = C(x) | C + UPO.06f(1*,C) | =1
for any C € Circ and x € {0,1}%m. Fix C € Circ and x € {0,1}‘m. Suppose we generate ¢ := (|As;), P, P,) as

prescribed in the description of UPO.05f. Letting 1 and y, be the values respectively computed in the third and forth
item of UPO.Zval (C, x), we prove the followings.

33

« Weprove thaty; = Fy(x) ® C(x) holds with probability 1. Foranya € A + s, wehave P; (4, x) = Fx(x) ® C(x)

from the correctness of i©®. Thus, given that |Ag) = —— Y, 4(—1){@! |a 4 s), if we apply the unitary E;

VAl
to |As) ® ’()éout>, we obtain the state | A) ® |Fx(x) @ C(x)). This means y = Fg(x) & C(x) holds with

probability 1, and the state obtained by tracing out the second register after measuring y is |As).

* We then prove y» = Fy/(x). Forany a € A 4 t, we have P;(a, x) = Fg(x) from the correctness of iO. Thus,
given that H®" | A, ;) = \/ﬁ Yaenl (f1)<u,s) |a + t), if we apply the unitary Ep to H®" |Ag) ® ‘Oeow>, we
obtain the state H®" |Ag;) @ |Fg(x)). This means y, = Fx(x) holds.

The above shows the perfect correctness of UPO.

5.2 Proof of Security

In the security proof, we additionally use the following primitives, where £|os is a polynomial in A and £4 = n2/2 is
the number of bits needed to represent a subspace A C IF5 of dimension n/2.

* Universal hash function family : {0,1}% — {0,1}¢a*",
* Collection of (finp, £i0ss)-lossy functions LF = (Geninj, Genjoss).
We prove the following theorem.

Theorem 5.2. Let D be a distribution over {0,1}m x {0,152 with conditional min-entropy at least £4 + n +
(linp — lioss) + w(log A). Then, assuming the existence of (Yinp, Cioss)-lossy functions LF, UPO satisfies D-generalized
UPO™ security.

We may choose £ 4 and 7 to be arbitrarily small polynomials. Assuming the LWE assumption, by Theorem 2.7,
we may also make ({inp — {|oss) an arbitrarily small polynomial while allowing /in, and o, to be any polynomials.
Moreover, D-generalized UPO " security implies D-generalized UPO security without any additional assumption by
Theorem 3.17 since our construction clearly satisfies 1O security and there exist keyed injective D-OWFs assuming the
LWE assumption. Therefore, the former part of Theorem 5.1 follows.

Proof of Theorem 5.2. Let Acp, = (4,8, C) be a QPT adversary against D-generalized UPO™security of UPO. We
consider the following sequence of hybrids.

gen-upoplus

Hyby: This is the original security experiment Expjpg 4 e

(A) in Definition 3.14. More specifically, it works as
follows.

1. Oninput 1%, 4 sends C € Circ together with two circuits i : {0, 1} — {0,1}eut and (- : {0,1} e —
{0, 1} out,
2. The challenger does the following.
* Choose coing < {0,1}, generate x5 < Dg(1"), Yg0 < C(x3),and Y1 < pz(xs).
* Choose coing < {0,1}, generate x» < De(11), Y < C(x¢), and Yeq < pe(xc).

The challenger generates C = (|Asyt), Dy, ﬁz) — UPOQ.06f (14, C*[x3, x¢, Y coings Y coin.]) and sends
cto 4.

3. A4 creates a bipartite state g over registers Rg and R.. Then, 4 sends register R to B and register R to C.
4. The challenger sends x4 and x to B and C, respectively.

5. B and C respectively output coinl and coin.. The challenger outputs 1 if coinl; & coin). = coing & coin,
otherwise outputs 0.

34

P{[Cmc, C, x5, xc, K{xs,xc}, wg, wc](a, x)
Hardwired constant: Descriptions of boolean circuits Cmc andC and string (xg, x¢, K{x3, x¢}, ws, wc), where K{xg, x.} describes
a key for PPRF punctured at {xg, x(}.
Input: (a,x).
. If Cmc(a) = 0, output L. Otherwise, go to the next step.
. if x = xg, output the hardwired value wg. Otherwise, go to the next step.

1

2

3. if x = x, output the hardwired value w,. Otherwise, go to the next step.
4

. Output Fy gy, 3 (%) ® C(x).

Figure 7: The description of the circuit P;.

P;[Cines x5, %0, K{xn, x0}, w5, wc] (0, x)
Hardwired constant: A description of a boolean circuit C;. and string (xs, x¢, K{x3, x¢}, ws, w¢), where K{x3,x} describes a
key for PPRF punctured at {xg, x}.
Input: (a,x).
. If C.(a) = 0, output L. Otherwise, go to the next step.
. if x = xg, output the hardwired value wg. Otherwise, go to the next step.

1

2

3. if x = x, output the hardwired value w,. Otherwise, go to the next step.
4

. Output FK{Xq;,xC}(x)'

Figure 8: The description of the circuit Pj.

By the definition, we clearly have

Pr[Hyby = 1] = Pr[Exptl“j;ng;; (V) = 1]

We below use the circuits Pj and Pj respectively described in Figure 7 and Figure 8.

Hyb;: This is identical to Hyb, except for the following changes, where K{xg, x,} < Puncture(K, {xz,x}),
Ysp <— FK(.X'rB), and Ye <— FK(Xc).

« P is generated as P; < iO(P{[Cme, C, xg,xc, K{x5,%c}, Y3 B Ya coing, Y B Ye,coing))-
« D, is generated as P < i(’)(Pﬁ[Cnﬁc, xz, Xc, K{xs,xc},y5,yc])-
From the security of i, we have

|Pr[Hyby = 1] — Pr[Hyb; = 1]| = negl(A).

Hyb,: This is identical to Hyb; except that y4 and y are generated as uniformly random strings instead of Fx (x) and
Fx(x¢), respectively. From the security of PPRF, we have

|Pr[Hyb; = 1] — Pr[Hyb, = 1]| = negl(A).

Hereafter, we assume that x5 # X, which holds with overwhelming probability.

Hybs: This is identical to Hyb, except that we replace y, with ¢ @ Y coin.. More specifically, the following changes
are applied.

35

e Dis generated as Dy « iO(P][Cme, C, x5, xc, K{x3,xc}, Y3 B Yacoing Yc))-
o P, is generated as D, < i(’)(PZ’[C#C, xz, Xc, K{xz,xc}, Y8, Yc B Yecoing])-

Since y ¢ is uniformly at random, so is ¥ @ Y coin,.. Thus, we have
Pr[Hyb, = 1] = Pr[Hybs = 1].
Hyby: This is identical to Hybs except that coing and coin are replaced with coing @ (rg,s) and coine @ (r¢, t),
respectively, where rg, 7 < {0,1}". More specifically, the following three changes are applied.
e Dis generated as Dy « iO(P{[Cmc, C, xg,xc, K{x3,xc}, Y3 & Yglcoin$@<,$,s>,yc]).
« P, is generated as Py < iO(Pﬁ[CHﬁC, xg, xc, K{xs,xc}, ys,yc ® Yc,coincaa(rf,t>])~
* The challenger outputs 1 if coin; @ coinl. = coing & coin¢ & (rg,s) @ (r¢, t) and otherwise outputs 0.

Since (coing, coin¢) is distributed uniformly at random, so is (coing @ (rg,s), coine @ (r¢, £)). Thus, we have

Pr[Hyb; = 1] = Pr[Hyb, = 1].

We below use the circuits ;7 and Q; respectively described in Figure 9 and Figure 10.

Hybs: This is identical to Hyb, except for the following changes, where h < H, F¢ < Geninj(11), 75 = Fi(xs), and

e = Fe(xc).
. Pis generated as Dy + iO(Q1[Cme, C, us, h, Fg,stra, 15, 1c, K, Y3,y c, coing|), where strg = (A||rg) @
h(Xg;).
o Pyisgenerated as P < iO(Q2[Cise, C, the b, e stre, 1z, e, K, ys, Y, coing)), where stre = (At|lre) @
h(xc).

We prove that
P{ [Cmcr C xg,xc, K{x% xC}I Y3 @ Y@,coingéa(rg,s}'yd

and
Ql [CmC/ C'/ Uz, h/ Flf/ strg, Ns,Mc, K/ Ys,Yc, COinB]

are functionally equivalent. For an input (a, x), we consider the following cases.

¢ The case where Cc(a) = 0 (i.e., a € A +s). In this case, both circuits output L according to the first
items of Figures 7 and 9, respectively.

* The case where Cmc(a) = 1(i.e.,a € A+5),andx = x3. Inthis case, Pj[Cmc, C, X, X0, K{x3, X0}, ys®
Yglcoing@w,@,yc] clearly outputs the hardwired value Yz & Y coinga(r,,s) according to the second
item of Figure 7. We show that Q1[Cmc, C, pts, h, Fi, strs, 5,1, K, ys, Y, coing| also outputs yg B
Y5 coing(rs,s) i this case. x = x implies Fi¢(x) = 113, and thus the computation goes to the second item
of Figure 9. Since x = x5, we have strg @ h(x) = A||rz. Since a € A + s, we also have Cany(a) = s.
Thus, we can conclude that it outputs yg © Y coinge where we recall that Yz = C(x) and
Yg1 = pa(xs).

¢ The case where Cinc(a) = 1 (i.e.,a € A+), and x = x. Since Fy is injective and we assume x5 # X,
the latter condition implies F¢(x) # 75 and F¢(x) = 7. Then, we can see that both circuits output v in
this case according to the third items of Figures 7 and 9, respectively.

(rg,s)>

¢ The case where Cipe(x) =1 (ie.,a € A+5s),and x € {xg,xc}. Since Fy is injective, the latter condition
implies F¢(x) & {ns,1c}. Then, we can see that both circuits output Fg(x) & C(x) according to the
fourth items of Figures 7 and 9, respectively.

36

Q1(Cme, C, s, b, B, stra, s, 11, K, Y,y o, coing] (a, x)

Hardwired constant: Descriptions of boolean circuits (Cmc, C, ji5), descriptions of functions (h, F), strings (strs, 75, 11¢c, K, Y, Yc),
and a bit coing.

Input: (a,x).
1. If Cmc(a) = 0, output L. Otherwise, go to the next step.
2. If F¢(x) = 13, do the following.
» Compute S||r + strg @ h(x).
* Output y5 @ C(x) if coing @ (r, Cang(a)) = 0 and ys @ pg(x) if coing ® (r, Cang(a)) = 1.
Otherwise, go to the next step.
3. If F¢(x) = #¢, output the hardwired value . Otherwise, go to the next step.
4. Output Fg (x) & C(x).

Figure 9: The description of the circuit Q.

Qa[Cihe, C, 1ic b, Fie stre, s, e, K, Y3, y e, coing) (a, x)

Hardwired constant: Descriptions of boolean circuits (Cr, C, #1¢), descriptions of functions (I, Fy¢), strings (str¢, 3,17, K, Y3, y¢)s
and a bit coin..

Input: (a,x).
1. If Cio(a) = 0, output L. Otherwise, go to the next step.
2. If K¢ (x) = #g, output the hardwired value 5. Otherwise, go to the next step.
3. If Fs(x) = 5¢, do the following.
» Compute S||r + strg @ h(x).
* Output y ® C(x) if coing & (r, Cang(a)) = 0 and y @ pc(x) if coine @ (r, Cang(a)) = 1.
Otherwise, go to the next step.

4. Output Fg(x).

Figure 10: The description of the circuit Q.

This shows that the two circuits are functionally equivalent.

We can similarly prove that P} [C,ﬁc, xg, Xc, K{xs,xc}, ys,yc ® YC,COincEB<rc,t)] and Q» [C#C, C,uc,h, Fe,stre, s, 1e, K,
Y3, Y, coing| are functionally equivalent. Then, from the above discussion and the security of /O, we have

|Pr[Hyby = 1] — Pr[Hybs = 1]| = negl(A).

Hybg: This is identical to Hybs except Fis is generated in lossy mode, that is, Ff < Gemoss(l’\). From the mode
indistinguishability of LF, we have

|Pr[Hybs = 1] — Pr[Hybg = 1]| = negl(A).
We below show that 1
Pr[Hyb6 = 1] < 5 + negl(A)

by a reduction to the computational strong indistinguishability monogamy property of coset states with simulatable
auxiliary input (Theorem 4.2) with respect to the following auxiliary input generator Aux = (AuxSetup, AuxGen 5, AuxGen)
and the corresponding simulator Sim = (Simg, Simc).

AuxSetup(17):

37

* Generate i + H and F¢ < Genjoes(17).
* Output pp = (h, F).
AuxGen . (pp, A, rx) where X € {B,C}:
* Parse pp = (, F).
+ Sample xy < Dx(1") and compute 7y := Fg(xx).
* Set
) (Allrg) ®h(xg) ifx=23
stry == n .
(A~|[re) ®h(xp) ifx=cC

* Output 21 y = (#x,strx) and zp y = Xx.

Simx(11) where X € {3, C}:
» Generate 77y in the same way as in AuxGen..
« Sample stry + {0,1}fa*",
* Output z1 y = (#x,strx).

First, we show that they satisfy the simulatability condition of Theorem 4.2.
Lemma 5.3. For X € {B, C}, any subspace A C FS, and any ryx € {O, 1}”,
pp < AuxSetup(1) } { pp < AuxSetup(1) }
,Z1 x) ~ ,Z1 x) ¢) .

{(pp 1) (z1,x,22,x) < AuxGen . (pp, A, 7x) (PP, 21,x) 21,x Simx(pp)

Proof of Lemma 5.3. In the execution of AuxGen (pp, A, 7x), note that fx = F (xx) is the only variables that depend
on Xx. By the assumption, xx has min-entropy at least £ 4 4+ 1 + ({inp — lioss) + w(log A). Since the image size of Fi¢
is at most 2inp—Closs | by the chain rule, xx has conditional min-entropy at least £4 + n + w(log A) given #7x. Thus, by
the leftover hash lemma (Lemma 2.2), (I, Fi¢, 17x, h(xx)) ~ (h, F¢, y1x, u’) where), < {0,1}%. This immediately
implies Lemma 5.3. O

We now construct the following adversary Amee = (?4, @, E) for the experiment in Theorem 4.2 using 4., =
(4,8,0C).

1. 4 is given |Agt), Cme = iO(A +5), Ch. = iO(A+ +1), pp = (I, Fy), 218 = (3,5trz), and z1 » =
(¢, stre). 4 invokes 4 with 11 and obtains the circuits (C, g,). 4 generates oc = (|Ast), D, I3J-) as in
Hybg. 4 can generate it with the given inputs, circuits (C, s, i) declared by 4, and (K, coing, yg, coing, yc)
sampled by 4 itself. 4 then sends pc to 4.

2. When 4 outputs a bipartite state ¢ over registers R and R, 4 sends (coing, ¢[R]) to B and (coinc, ¢[R¢]) to C.
3. Band C are respectively given (A, 13,205 = x3) and (A, 7,220 = x¢) and behave as follows.

* Binvokes B with ¢[Rg] and x4, and obtains coin’,. B outputs coin’, & coing.
* Cinvokes C with q[R¢] and x., and obtains coin’c. ¢ outputs coin’c @ coing.
Amoe perfectly simulates Hybg for Acp. If 4., wins the simulated experiment (i.e., Hybg outputs 1), we have

coinl, @ coinl. = coing @ coing @ (rg,s) @ (rc, t), that is, (coinly @ coing) @ (coin). & coing) = (rg,s) & (rc, t).
Thus, by Theorem 4.2 and Lemma 5.3, we have

- —ind-moe- 1
Pr[Hybs = 1] = Pr{Expfgi‘;j;E;:jj nd-moe-avx (1) = 1} < 5 +negl(A).
Combining the above, we have
1
Pr[Expttle o, (V) = 1] < 5 + negl(A).
This completes the proof of Theorem 5.2. O

38

6 Alternative Proof of Security for Uniform Inputs

Here, we give an alternative security proof for the special case of the uniform input distribution. An advantage of this
alternative proof is that it does not rely on the additional assumption of lossy functions.

In the security proof, instead of universal hash functions and lossy functions, we rely on a new primitive which we
call key-robust non-committing encryption.

Definition 6.1 (Key-Robust Non-committing Encryption). A key-robust non-committing encryption scheme NCE with
the message space M is a tuple of five PPT algorithms (Gen, Enc, Dec, Fake, Open).

Gen(l’\): The key generation algorithm takes as input a security parameter 1* and outputs a key k.
Enc(k,m) — ct The encryption algorithm takes as input a key k and a message m € M, and outputs a ciphertext ct.

Dec(k,ct) — m’ The decryption algorithm is a deterministic algorithm that takes as input a key k and a ciphertext ct,
and outputs m' € M U{L}.

Fake(1}) — (ct*,st) The fake algorithm takes as input a security parameter 1*, and outputs a fake ciphertext ct* and
a state information st.

Open(st,m) — k* The open algorithm takes as input a state information st and a message m € M, and outputs a key
k*.

We require it to satisfy the following three properties.

Correctness: With overwhelming probability over the choice of k < Gen(l)‘), Joranym € M,

Pr[Dec(k, Enc(k,m)) = m] = 1.

Key-Robustness: With overwhelming probability over the choice of k <— Gen(1%), for any m € M and any k' # k,
Pr[Dec(k’, Enc(k,m)) = L] = 1.
Non-committing: For any message m € M, we have
(ct, k) & (ct*, k*),

where k <+ Gen(1"), ct + Enc(k,m), (ct*,st) < Fake(1"), and k* < Open(st, ct*).

We say that a key k is good if both Pr[Dec(k, Enc(k,m)) = m] = 1 and Pr[Dec(k’, Enc(k,m)) = L] = 1 hold for all
m and k' # k. By the union bound, a key generated by Gen(lA) is good with an overwhelming probability.

Theorem 6.2. Assuming the existence of keyed injective OWFs, for any polynomial {,,, there exists a key-robust
non-committing encryption scheme with the message space {0, l}g"’, where the key length is linear in {y,.

See Appendix A for the proof.

Note that keyed injective one-way functions exist assuming the existence of iO and one-way functions [BPW16],
thus a key-robust non-committing encryption scheme exists assuming he existence of iO and one-way functions.

We rely on the following primitive, where £y is a polynomial in A and ¢4 := n?/2 is the number of bits needed to
represent a subspace A C [F} of dimension 7/2.

* A key-robust non-committing encryption scheme NCE = (NCE.Enc, NCE.Dec, NCE.Fake, NCE.Open) with the
message space {0, 1}¢47" and the key space {0, 1}.

We prove the following theorem.

Theorem 6.3. Let U be the uniformly random distribution over {O, 1}£i"P where linp > {. Then, UPO satisfies
U-generalized UPO™ security.

39

For any polynomial ¢;,,, we may choose sufficiently small polynomial ¢ such that i, > f). Also, we may choose
Loyt to be any polynomial. Moreover, 7i-generalized UPO T security implies 7/-generalized UPO security without any
additional assumption by Theorem 3.17 since our construction clearly satisfies iO security and there exist keyed injective
U-OWFs assuming the existence of iO and OWFs. Therefore, the latter part of Theorem 5.1 follows.

Proof of Theorem 6.3. For simplicity, we give the proof assuming /i, = ¢) while the extension to the general case is
straightforward.

Let 4, = (4, B, C) be a QPT adversary against D-generalized UPO ™ security of UPO. We consider the following
sequence of hybrids.

Hybg-Hyb,: They are identical to those in the security proof in Section 5.2 except that x4 and x . are chosen uniformly
randomly instead of from the distributions D and D, respectively.?”

We below use the circuits Q] and Q) respectively described in Figure 11 and Figure 12.

Hybs: This is identical to Hyb, except for the following changes,where ks <~ NCE.Gen(1%), ks +~ NCE.Gen(1%),
ctg < NCE.Enc(kg, Al|rg), and cte < NCE.Enc(k¢, Allre).

e D is generated as Dy « iO(Q}[Cme, C, g, strg, stre, ct, cte, K, ys, Yo, coing]), where strg = kg & xa.
o P, is generated as D, < iO(Q5[Cike, C, pic, stra, stre, cty, cte, K, Yz, Y, coing]), where stre = ke @ x .

Below, we assume that both k3 and k- are good as per Definition 6.1, i.e., the perfect correctness and key-robustness
hold under those keys, since this holds with overwhelming probability.

We prove that
P{ [CmCr C, xg, Xc, K{x'Br xC}r Y3 D Y@,coinq;aa(r@,s)ryc}

and
Q/] [Cmc/ C/ ,uﬂr strg, ctg, CtC/ K/]/CB/]/C/ COin@]

are functionally equivalent. For an input (4, x), we consider the following cases.

¢ The case where Cc(a) = 0 (ie.,a € A +s). In this case, both circuits output | according to the first
items of Figures 7 and 11, respectively.

¢ The case where Cmc(a) = 1(i.e.,a € A+5),andx = xg. Inthis case, Pj[Cmc, C, xs, X0, K{x5,x0},ys®
Y3 coing®(ras), yc] clearly outputs the hardwired value yz © Y coin 5@ (ra,s) according to the second item
of Figure 7. We show that Q) [Cmc, C, jis, Strs, cts, cte, K, Y3, Y, coing] also outputs i3 & Y5 coing (ras)
in this case. x = xg implies k), = strg @ x = kg, and thus NCE.Dec(kl;, ct3) = A|lrs # L by the
correctness of NCE. Therefore, the computation goes to the second item of Figure 11. Since a € A + s, we
also have Cany4(a) = s. Thus, we can conclude that it outputs Yz © Y coin,e (ra,s)» Where we recall that
YQ;,O = C(Xrg) and Y!B,l = yq;(xgg).

 The case where Cipc(a) = 1 (ie., 2 € A+5), and x = xc. Since we assume X5 7# X, we have
kiy = strg & x # kg and k. = strc @ x = k.. Thus, by the key-robustness and correctness of NCE,
NCE.Dec(k%, ctz) = L and NCE.Dec(k/,,ctc) = A||rc # L. Then, we can see that both circuits output
Y ¢ in this case according to the third items of Figures 7 and 11, respectively.

* The case where Cne(x) =1 (ie.,a € A+5s),and x ¢ {x5, xc}. Then we have kj; = strg @ x # kg and
ki~ = strc @ x # kc. By the key-robustness of NCE, NCE.Dec(k/, ct) = L and NCE.Dec(k., ctc) = L.
Then, we can see that both circuits output Fg (x) @ C(x) according to the fourth items of Figures 7 and 11,
respectively.

20Note that the universal hash functions and lossy functions are not used at or before Hyb,.

40

Q}[Cme, C, pg, strg, stre, ctg, cte, K, yas, yc, coing) (a, x)
Hardwired constant: Descriptions of boolean circuits (Cmc, C, i), strings (strg, strc, ctg, cte, K, ys, yc), and a bit coing.
Input: (a,x).
1. If Cmc(a) = 0, output L. Otherwise, go to the next step.
2. If NCE.Dec(kly, ctg) # L where kjy < strg @ x, do the following.
* Compute S||r + NCE.Dec(k, cts).
* Output y5 @ C(x) if coing @ (r, Cang(a)) = 0 and ys @ pgz(x) if coing ® (r, Cang(a)) = 1.
Otherwise, go to the next step.
3. If NCE.Dec(kl, ctc) # L where k/. <— strc & x, output the hardwired value .. Otherwise, go to the next step.
4. Output Fg(x) & C(x).

Figure 11: The description of the circuit Q.

Qb [Cike, C, pe, stra, stre, cty, cte, K, ys, Yo, coine (a, x)
Hardwired constant: Descriptions of boolean circuits (Cp., C, i), strings (strg, stre, ctg, cte, K, ys,y¢), and a bit coin.
Input: (a,x).
1. If Cih.(a) = 0, output L. Otherwise, go to the next step.
2. If NCE.Dec(kly, cts) # L where kj; < strg @ x, output the hardwired value 5. Otherwise, go to the next step.
3. If NCE.Dec(k/,, ct;) # L where kl. — str @ x, do the following.
* Compute S||r <~ NCE.Dec(k/, ct¢).
* Output y & C(x) if coing & (r, Cang(a)) = 0 and y & pc(x) if coine & (r, Cang(a)) = 1.
Otherwise, go to the next step.
4. Output Fg(x).

Figure 12: The description of the circuit Q5.

This shows that the two circuits are functionally equivalent.

We can similarly prove that P} [Crhcr X3, x0, K{x3, %0}, Y3,y @ Yacoinc@<,ot>] and Q) [Cike, C, 1ic, strp, stre, ctg,
cte, K, ys,yc, coinc] are functionally equivalent. Then, from the above discussion and the security of 1O, we
have

|Pr[Hyby = 1] — Pr[Hybs = 1]| = negl(A).
Hybg: This is identical to Hybs except for the following changes.

* (ctg, kg) are generated as (ctg, stg) < NCE.Fake(l’\) and kg < NCE.Open(stg, Al|7g).
* (cte, ke) are generated as (cte, ste) < NCE.Fake(1%) and k. < NCE.Open(stc, A ||rc).

From the non-committing property of NCE, we have
|Pr[Hybs = 1] — Pr[Hybs = 1]| = negl(A).

Hyb7: This is identical to Hybg except that strg and str- are chosen as uniformly random strings and then we set
Xg = strg @ kg and x := stro D k.

Since the challenge inputs xg, X~ are uniformly random, the strings strg = kg ® x3,strc = ko @ x are also
uniformly random. Thus, this hybrid is identical to the previous one from the view of the adversary, and thus,

Pr[Hybg = 1] = Pr[Hyb, = 1]

41

‘We below show that 1
Pr[Hyb, = 1] < 5+ negl(A)

by a reduction to the computational strong indistinguishability monogamy property of coset states with no auxiliary
information, i.e., the special case of Theorem 4.2 where Aux = (AuxSetup, AuxGen) outputs nothing, and thus the
simulatability condition is trivially satisfied.?!

We now construct the following adversary Amoe = (171, @, Z‘) for the experiment in Theorem 4.2 with no auxiliary
input using Acp = (4, B, C).

1. 4 is given |Agy), and Cme = iO(A +), Cih. = iO(AL +t). 4 invokes 4 with 1! and obtains the circuits
(C,up, tic). A generates pc == (|Ast), P, P*) as in Hyb,. 4 can generate it with the given inputs, circuits
(C, pg, pc) declared by 4, and (K, coing, g, strg, ctg, stg, coing, ¢, stre, cte, ste) sampled by 4 itself. 4 then
sends pc to 4.

2. When 4 outputs a bipartite state ¢ over registers R and R, 4 sends (coing, ¢[Rs]) to B and (coinc, g[R]) to C.
3. B and C are respectively given (A, r3) and (A, r¢) and behave as follows.
. B computes kg <— NCE.Open(stg, Al|rg) and x5 = strg @ kg, invokes B with ¢[Rg] and x3, and obtains
coinj. B outputs coiny & coing.
. C computes k¢ <— NCE.Open(ste, AL||r¢) and x(== str @ k¢, invokes € with g[R¢] and x -, and obtains

./ . .
coinj.. C outputs coin & coin.

Amoe perfectly simulates Hyby for 4c,. If 4, wins the simulated experiment (i.e., Hyby outputs 1), we have
coiny @ coinl. = coing @ coinge @ (rs,s) ® (rc, t), that is, (coinly & coing) @ (coin. & coing) = (rs,s) ® (re,t).
Thus, by Theorem 4.2, we have

1
Pr[Hyb, = 1] < 3 + negl(A).
Combining the above, we have

Pr [Exptupomus (/\) — 1:| S + negl()\)

UPO, U, A

N =

This completes the proof of Theorem 6.3. O

7 Oracular Pseudorandomness-Style Copy-Protection

In this section, we show oracular pseudorandomness-style copy-protection for all puncturable secure circuit classes.

7.1 Puncturable Secure Circuits

We first generalized the existing definitions of (average-case) puncturable secure circuits [AB24, CG24b], in terms of
the number of points of puncture, and define puncturing security as follows:

Definition 7.1. For any £ := £(A) which is a polynomial function of A, let Circ = {C : X — Y} be a circuir class,
where X = {0,1}",Y = {0,1}" for polynomials m := m(A),n := n(A), equipped with an efficient deterministic
algorithm Puncture that satisfies puncturing correciness, i.e., Puncture(C, x) outputs a circuit that outputs C(x) if
and only if x # x'. We say that (Circ, Puncture) satisfies {-point m-bit (Dyx, Dciy)-unpredictability-style puncturing
security (generalized from [AB24]) if for every QPT a/dversary 4, for every ' < {, the probability that 4 succeeds in

14
the following security game is at most 1 — (l — %) + negl:

21 For the special case of Theorem 4.2 with no auxiliary information, the proof given in Section 4.1 is redundant. Simply applying the simultaneous
quantum Goldreich-Levin lemma (Lemma 2.8) to the computational strong monogamy property of coset states [CLLZ21] suffices, as shown in
[KY25b].

42

° X1 (—Dx,...,Xg/ < Dy,
e C+ DCirc(lA),
o C« Puncture(C, (x1,...,xp)),

. yi, ..,yz, — ﬂ(é, (x1,. . .,xg/)) and,

e A wins if there exists i € [{'] such that y; = C(x;). **
Moreover we say that the circuit class satisfies {-point m-bit (Dx, Dcirc)-pseudorandomness-style puncturing
security (generalized from the decision puncturing notion in [CG24b]) if for every £’ </,

{C’ (xl’ T xé’)’ (C(xl)’ T C(xé’))}@—Puncture(C,(xl,...,xf/)),xl<—DX,...,x[/eDX,CeDCirc(lA)

~ éx...X/ Yi,..., Yy . .
AC (o), (Mo Yo))}CePuncture(C,(xl,...,xw)),xl HDX,...,XyHDX,CHDC”C(1/\),Y1,“.,Yé/(iY
Next, we review the relationship between unpredictability-style and pseudorandomness-style puncturing security in
various parameter regimes.

Remark 7.2. Clearly, if a circuit class satisfies £-point m-bit (Dx, Dcjyc)-pseudorandomness-style puncturing security
then it also satisfies 1-point m-bit (Dx, Dcirc)-pseudorandomness-style puncturing security.”

Lemma 7.3. For any £ := £()A), m := m(A) which are polynomials in the security parameter A, if a circuit class
(Circ, Puncture) satisfies {-point m-bit (Dx, Dcirc)-pseudorandomness-style puncturing security then it also satisfies
L-point m-bit (Dx, Dcir)-unpredictability-style puncturing security. Moreover, if m = { = 1, the converse is
also true, i.e., 1-point 1-bit (Dyx, Dcirc)-pseudorandomness-style puncturing security is equivalent to 1-point 1-bit
(Dx, Dcirc)-unpredictability-style puncturing security.

Proof of Lemma 7.3. Let (Circ, Puncture) be a circuit class satisfying ¢-point m-bit (Dx, Dcirc)-pseudorandomness-
style puncturing security. Let 4 be an adversary that wins the (Dx, Dcic)-unpredictability-style puncture security

game with respect to some ¢ < ¢ with probability p > (1 —(1-1/ 2’”)[,). Hence the advantage of 4, Adv(4) =

p— (1 -(1-1/ Zm)g/) Consider an adversary B in the (Dy, Dcjc)-pseudorandomness-style puncture security

game: Boninput (C, (x1,...,%¢),(y1,--.,Y¢)), runs y’l, e, y%, — ﬂ(é, (x1,...,%p)), and outputs O if there exists
i € [¢'] such that y! = y;, else outputs 1. Clearly, for any ¢ < ¢,

P B(C, (x1,...,x0), (Y1, ..., yp)) =1
. [B(C, (x1,. ., x0), (y1,-- -, yer)) = 1]

Ce Puncture(C,(x1,...,x4)),
x;+DxVi€[l'],C+Dcirc (11)

=1- Pr. 3, yi=y]=1-p.
(y’l,...,yz,,)eﬂ(C,(xl,..A,x[/)),
yieC(x;)Vie[l'],
é<—Puncture(C,(x1,...,x£/)),
xjDxVi€[l'],C+Dcire (1)

22The definition in [AB24] was only defined for search function classes, i.e., with m € (u(log()\)), but we generalize their definition for function
classes with arbitrary output sizes

2By a proof similar to that of Theorem 8.17 that we are going to see next, we believe that the implication in the converse direction is also true
for the circuit class under a post-quantum iO iO, i.e., if iO(Circ) satisfies 1-point m-bit (Dx, Dcirc)-pseudorandomness-style puncturing security,
then iO(Circ) should satisfy the ¢-point m-bit (Dx, ﬁCirc)-pseudorandomness-style puncturing security where ﬁc"c is the same distribution as in
Theorem 8.17. Hence, ¢-point pseudorandomness-style puncturing security for any iO obfuscated circuit class should be morally equivalent to 1-point
security, for any polynomial £.

43

Next,

. Pr [@(C,(xl,...,xg/),(yl,...,yg/)):1]
i< Yviell'],
éePuncture(C,(xl,...,x(/)),
% DxVi€[l'],C+Deire (1Y)

I

7N
[—
|
N
3\“
N———
<‘§\

= Pr. ly} # vy;, Vi € [¢']]
W17y)= AC (X1 p1)),
i Yvie[t!),
éePuncture(C,(xl,...,x[/)),
x;¢~DxVi€[l'],C+Deire (1)

Hence, the distinguishing advantage of B is given by

Adv(B) = Pr Qié,x,...,xr, oo yp)) =1
B =| P B b))
(?ePuncture(C,(x],...,xé/)),
xj<DxVie[l'],C+Dcire (1Y)

— . Pr [B(C,(xl,...,x€/),(]/1,...,yg/)) :1]
v YViell],
6%Puncture(C,(x1,...,x[/)),
xj<DxVi€[l'],C+Dcire (1Y)
1\" 1\"
Since (Circ, Puncture) satisfies ¢-point m-bit (Dx, Dciyc)-pseudorandomness-style puncturing security, Adv(2) =
Adv(8) must be negligible, which completes the proof for the first part of the lemma.
Next for the “Moreover” part, let (Circ, Puncture) be a boolean output circuit class satisfying 1-point 1-bit

(Dx, Dcire)-unpredictability-style puncturing security. It is enough to show that for every distinguisher 3,
Pr [B(C,x,y) =1]

Adv(B) = R
y4C(x),C<+—Puncture(C,x),x<Dx,C+Dcirc (11)

- Pr [B(C,x,y) =1]
y(iY,(fePuncture(C,X),XFDX,CFDCirc(1/\)

is negligible. R
For any bit b* € {O’ 1} let ppe = Pr@ePuncture(C,x)rCeDCirc(lA)|C(x):b*'XFDX [B(C’ x, b)) = 1]’ and let ;- =

= _ /\
Pr@ePuncture(C,x),CeDCi,c(19‘)\szl,b*,xeDX [B(C, x,b*) = 1], where Dcirc(1") |¢(x)—p~ is the conditional distribution

given by DC;rc(l)‘) conditioned on the event that the sampled circuit C has output value b* on x. Next for any bit
b* e {0' 1} let zp« 1= PréePuncture(C,x),C<—DCirc(l7‘),x(—DX [C(X) = b*]

Next, note that for any b* € {0,1}, if |pp« — gp+| is non-negligible, then WLOG, assume pp+« > g+, then we can
violate 1-point (Dyx, Dcjrc)-unpredictability-style puncturing security, by considering the following adversary 4, which
on input (C, x) runs d < B(C, x,b*) and outputs b* if d = 1 and 1 — b* if d = 0. It is easy to see that the success

44

probability of 4 in the unpredictability puncture security game is precisely py« — g,+. Hence ,we conclude by the
1-point (Dx, Dcirc)-unpredictability-style puncturing security of (Circ, Puncture) that

|ppe — qp+| < negly-(A),)

for some negligible function negly: (-). Similarly, if |z;« — 1/2| is non-negligible, then WLOG, assume zj« > 1/2, then
we can violate 1-point (Dx, Dcirc)-unpredictability-style puncturing security, by considering the following adversary 4,
which on input (é, x) always outputs b*. Clearly, the success probability of 4 in the unpredictability puncture security
game is precisely zy« — 1/2. Hence ,we conclude by the 1-point (Dyx, Dciyc)-unpredictability-style puncturing security
of (Circ, Puncture) that

|2y —1/2| < neglys (A), 3)
for some negligible function negly- (-). Finally, note that by definition,
R Pr [B(C,x,y)=1] = Z Zps Pp,
y4C(x),C+Puncture(C,x),xDx,C<Dcirc (11) b*e{0,1}
and
Pr [ﬂ(é\, X, y) = 1] = Z Zp* 7(?’1}* +2q1_b*)
y<in<—Puncture(C,x),x<—DX,C<—Dcim(lA) b*e{0,1}

Pb*Zp< + p*Z1—p>
5)

b {01}

With this in mind, note that the advantage of B in the pseudorandomness-style puncture security game,

Adv(B)

= _ Pr ['B((AZ, x,y) =1]
y<+C(x),C<Puncture(C,x),
x4Dx,CDcirc(11)

— Pr [Q(é,x,y) =1]
y(iY,éePuncture(C,x),
x4Dx,C—Dcire(11)

* Zh* + *Z1_h*
_ Z Zpe P — Z Pv+2p 2% 1-b
b*e{0,1} b*e{0,1}

Py +9p*

Z & _ Z ; + Z Pp* _2Q1—b* rTe\g/lb* (/\)

b*e{0,1} 2 b*e{0,1} b*e{0,1}

IN

Py +9p*
2
2

Poe
2
b*e{0,1} b*e{0,1}

IN

+e(d) By (3)

=| ¥ P e
b*e{0,1}

<1/4). |ppy —qp| + ()
b*e{0,1}

* ne | *
< Zbe“)%}g” +e(M), By (2)

45

where €(A) := (maxb* negly- (/\)) Yirefo1) “7”*72#1’*' is a negligible function in A and hence the last expression is

negligible in the security parameter A. O

7.2 Oracular Pseudorandomness-Style Copy-Protection for Pseudorandomness-Style Puncturable-
Secure Circuits

Theorem 7.4. Let Dy be a high min-entropy distribution on the input space X and (Circ, Puncture) be a puncturable
circuit class satisfying 2-point m-bit (Dx, Dcirc)-pseudorandomness-style puncturing security (see Definition 7.1).

Then any UPO scheme UPO = (O6f, Eval) satisfying (Dx X Dx)-generalized UPO anti-piracy for Circ with
respect to Program ,,onical, @S well as iO security (see Definition 3.11 and Lemma 3.16), is also a (Dcjrc X Dx X Dyx)-
oracular-pseudorandomness-style copy-protection scheme for Circ with Copy®Protect = UPO.0bf and Eval = UPO.Eval
(see Definition 3.3).

Moreover, if the underlying UPO scheme UPO = (0bf, Eval) satisfies (Dy x Dy)-generalized-UPO™ antipiracy
Jor Circ (see Definition 3.14) as well as iO security (Lemma 3.16), then the copy-protection scheme also satisfies
(Dcire X Dx x Dx)-oracular-pseudorandomness-style CP+ anti-piracy (see Definition 3.4).

Proof of Theorem 7.4. The correctness is immediate from the correctness of UPO.

Let Program denote the algorithm that on input (C, (x1, ..., x¢), (y1,- .., Y¢)) outputs runs éxl,_._,xé < Puncture(C,
(x1,...,x7)), and then outputs the circuit C that has (y1,...,1,) and éxl,‘_,,xé hardcoded in it such that on every input
x e X\ {xq,...,x}, 60utputs 6,51,,“,3(((x) and for every input x = x;jforj € [4], outputs yj.

We provide the (Dcjre X Dx X Dx)-oracular-pseudorandomness-style copy-protection anti-piracy below. Consider
the following hybrids. The changes are highlighted in red.

Hj: this corresponds to the pseudorandomness-style copy-protection security experiment. Denote the copy-protection
adversary to be (4, B, C).

» Sample x1 < Dx and x, < Dy independently, and b & {0,1},
+ 4 gets UPO.06f (1", C) and oracle access to C, where C <+ Dcjrc (1),

o After the splitting experiment, along with oracle access to C \ {x;} and C \ {x,} respectively, if b = 0, B and C
receive (x1,39) and (x, y3) repectively, where y? = C(x;) for every i € [2], and if b = 1, they receive (x1,y})

and (xp,y3) repectively, where y} E Y for every i € [2].
* (B,C) output (bg, be).
The output of the hybrid is bg, b, b. Denote the probability that bz = b = b to be py.
H: this hybrid is defined as follows:
 Sample xq < Dx and x, < Dy independently, and b & {0,1},

* 4 gets oracle access to C, and the state UPO.OEf(lA, 6), where if b = 0, C = C, C « ’DCirc(lA), else
C < Program(C, (x1,x2), (y1,Y2)), y1 < C(x1),y2 < C(x2),C + DCirc(l)‘).

After the splitting experiment, along with oracle access to C \ {x; } and C \ {x,} respectively, if b = 0, B and ¢
receive (x1,39) and (x, y3) repectively, where y? = C(x;) for every i € [2], and if b = 1, they receive (x1,y})

and (xp,y3) repectively, where y} E Y for every i € [2].

(fB, C) output (bq;, bc)

46

The output of the hybrid is bg, b, b. Denote the probability that bg = be = btobe p;.
The only difference from Hy to Hy is that we replaced C with C. Since the functionalities of C and C are the same,

by the indistinguishability obfuscation guarantees of UPO, computational indistinguishability between the outputs of
Hj, and H; holds. Hence

lpo — p1l < e1(A),

for some negligible function €1 (-).
H;: this hybrid is defined as follows:

» Sample x1 < Dx and x, < Dy independently, and b & {0,1},

* 4 gets oracle access to C, and the state UP0.0Ef(l/\, 6), where if b = 0, C = C, C + DCirc(l/\), else
-~ $
C+ Program(C, (xler)/ (yl/yZ))9 y1/y2 — Y9 C+ DCirC<1A)'

« After the splitting experiment, along with oracle access to C \ {x;} and C \ {x,} respectively, if b = 0, 8 and ¢
receive (x1,Y) and (x2,9) repectively, where) = C(x;) for every i € [2], and if b = 1, they receive (x1,y])

and (xp,y3) repectively, where y} &Y for every i € [2].
* (B, C) output (bg, be).

The output of the hybrid is bg, b, b. Denote the probability that by = b = b to be p».
The indistinguishability between the outputs of H{ and H; holds by 2-point m-bit puncturable circuit class satisfying
(Dx, Dcirc)-pseudorandomness-style puncturing security of Circ with respect to Puncture. Hence

Ip1 — p2| < e2(A),

for some negligible function €5 (-).
Hj: this hybrid is defined as follows:

» Sample x1 < Dx and x, < Dy independently, and b & {0,1},

* 4 gets oracle access to C, and the state UP0.0Ef(l/\, é), where if b = 0, C = C, C « DCirc(l/\), else
=~ $
C + Program(C, (x1,x2), (y1,42))s y1,¥2 <= Y, C < Dcirc (11).

« After the splitting experiment, along with oracle access to C \ {x;} and C \ {x,} respectively, if b = 0, 8 and ¢
receive (x1,1Y) and (x2,9) repectively, where) = C(x;) for every i € [2], and if b = 1, they receive (x1,y])
and (xp,y3) repectively, where ! = C(x;) for every i € [2].

* (B,C) output (bg, be).
The output of the hybrid is bg, b, b. Denote the probability that by = b, = b to be ps.
The indistinguishability between the outputs of H{ and H; holds by 2-point m-bit puncturable circuit class satisfying
(Dx, Dcirc)-pseudorandomness-style puncturing security of Circ with respect to Puncture. Hence
[p2 — p3| < e3(A),
for some negligible function e3(-).

H,: this hybrid is defined as follows:

» Sample x1 < Dx and x, < Dy independently, and b & {0,1},

47

* 4 gets oracle access to C. and the state UP0.0ﬁf(l)‘, 6), where if b = 0, C = C, C « DCirc(l)‘), else
= $
C < Program(C, (x1,x2), (y1,¥2)), where y1,y2 < Y, C < DC;,C(l)‘).

« After the splitting experiment, along with oracle access to C \ {x1} and C \ {x,} respectively, B and ¢ receive
(x1,C(x1)) and (xp, C(x2)) respectively.

* (B, C) output (bg, be).

The output of the hybrid is bg, b, b. Denote the probability that bg = b = b to be py.
The outputs of Hz and Hy have the same distribution since the distribution over 1y and y; was the same in Hj.
Hence,

P4 = Ps.
Hj5: this hybrid is defined as follows:

* Sample x1 < Dx and x, « Dy independently, and b & {0,1},

* 4 gets oracle access to C, and the state UPO.Oﬁf(lA, 6), where if b = 0, C = C, C « DCirc(lA), else
=~ $
C < Program(C, (x1,x2), (y1,¥2)), where y1,y2 < Y, C < DC;,C(l)‘).

« After the splitting experiment, along with oracle access to C \ {x;} and C \ {x,} respectively, 8 and ¢ receive
(x1,C(x1)) and (xp, C(x2)) respectively.

* (B, C) output (bg, be).

The output of the hybrid is bg, b, b. Denote the probability that bg = b = b to be ps.

Since C \ {x1} and C \ {x;} differ in functionality only at x>, the challenge point for ¢, the only difference between
H, and Hj is that we change the oracle access to B by changing the oracle output at x».

Let g3(A) be the number of oracle queries that B makes for some fixed polynomial g5(A)%*. In Hy, for each
i€ [qa), let Wi,qz denote the total weight of i query on x,, where the i query can be written as Yony Xxy,i)) o

for input and output registers | and O respectively. In other words, Wi 3= Zer |txe,y,i|2. Let Wy g =) Wi be the
combined weight of B’s queries on x, as query points in Hy. We will show the following claim.

Claim 7.5. E[Wy 5] is negligible in A.

Combining Claim 7.5 with the fact that g5 is a polynomial in A, we conclude that g - IE[Wy 5] is also negligible in
A. Hence, by Theorem 2.1, where we treat T = g5, we conclude that changing the oracle output for B at x5, in Hy
results in a statistically indistinguishable output distribution, i.e., {bqg, be, b}. Since the only difference between H,4 and
Hj is that the oracle output for B at x5 is different, we conclude that the output distribution in Hy is computationally
indistinguishable25 from that of Hs. Hence,

|pa — ps| = e5(A),

for some negligible function e5(-).
Next, we prove Claim 7.5 to complete the proof of indistinguishability for the output distributions of Hs and Hs.

Proof of Claim 7.5. Let Wy ¢ be the combined weight of B’s queries on x; as query points in Hp, i.e., Wp 3 =
Zie[%] Wé,z; where for each i € [g3], Wég denotes the total weight of i*" query on x,. In Hy, x, can be sampled
after B’s queries as x» is sampled independently of B’s state and challenge x1. Therefore, since x;, are sampled from
Dx. there exists a negliglbe function negl(-) defined as negl(A) := 2-Min-entopy(Dx) gych that for each i € [gs],
IE[Wé,@] = negl(A), i.e., E[Wp 4] = g5 - negl(A), which is negligible in the security parameter A.

Next consider, the following distinguishing attack (4, B, E):

2*WLOG, we can assume that B makes a fixed polynomial number of queries in all the hybrids.
25The reason this indistinguihsability is computational rather than statistical is that Claim 7.5 holds only for computationally bounded 3.

48

1. B runs B on the challenge and the state received from 4 and performs the oracle queries from B and feeds the

output back to B up until the jth query, where j ﬁ [94] is sampled ahead of time. On the jth query, B measures
the query input register |. Let the measurement outcome be x’. B outputs x’.

2. C on receiving a challenge from the challenger, outputs the challenge itself.

For any /1 € {0,4}, let the probability that with adversaries (4, B, C) in Hy, B and C outputs the same string, be qu.
py| — py!| must be

Since the output distribution of Hy is computationally indistinguishable from that of H,
negligible in A. However, note that by definition of 8 and C, they output the same string if and only if x’, the measurement
outcome of a random query of B, is the same as x5, the challenge for ¢. Hence, for any h € {O, 4},

: E[W, ;] E[W, 4]
eq _ iq_ nal B
Pu *Ei&[q@}m[wh,g] = Z s - g5

i€[qs]

Therefore, by the computational indistinguishability of the output distributions of Hy and Hy, we conclude that

[EWo s EWosl| _ | EWan] _ EWosy| — | p%0 _ pf) g negligible, which implies that [IE[Wy,] — IE[Wo,]| must be

qs qs qs
negligible in A, since g3 is polynomial in A. Moreover since IE[W)p 4] is negligible as concluded above, IE[Wj 4] must
be negligible in A. O

Hg: this hybrid is defined as follows:

 Sample xq < Dx and x, < Dy independently, and b & {0,1},

* 4 gets oracle access to C, and the state UPO.OEf(lA, 6), where if b = 0, C = C, C « ’DCirc(lA), else
= $
C <« Program(C, (x1,x2), (y1,12)), where y1,y2 <~ Y, C < Dcirc(11).

o After the splitting experiment, along with oracle access to C \ {x1} and C \ {x,} respectively, B and C receive
(x1,C(x1)) and (x2, C(x2)) respectively.

* (B, C) output (bg, be).

The output of the hybrid is bg, b, b. Denote the probability that by = b = b to be pe.

Since C \ {x,} and C \ {x,} differ in functionality only at x1, the challenge point for B, the only difference between
H; and Hg is that we change the oracle access to C by changing the oracle output at x1.

By analogous arguments as in the proof of indistinguishability of H4 and Hs but with the roles of B and C switched,
we can conclude that the outputs of Hs and Hg are computationally indistinguishable and hence,

|ps — ps| = es(A),

for some negligible function €4 (-).
Hy7: this hybrid is defined as follows:
» Sample xq1 < Dx and x; < Dy independently, and b & {0,1},

e 4 gets oracle access to C, and the state UP0.0Ef(l/\, 6), where if b = 0, C = C, C + DCirc(l/\), else
P~ $
C + Program(C, (x1,x2), (y1,12)), where y1,y2 <~ Y, C + Dcirc(11).

* After the splitting experiment, along with oracle access to C \ {x7} and C \ {x,} respectively, 8 and C receive
(x1,C(x1)) and (x2, C(x2)) respectively.

* (B,C) output (bg, be).

49

The output of the hybrid is bg, b, b. Denote the probability that by = b = b to be py.
Since C and C differ in functionality only at x; and x», the respective challenge points for B and C, the only
difference between Hy and Hyg is that we change the oracle access to 4 by changing the oracle output at xq and x5.
Let g4(A) be the number of oracle queries that B makes for some fixed polynomial 4(A). In Hg, for each i € [q4],
let Wé/ , denote the total weight of it" query on x1 or x,, where the i query can be written as Yoy Xy, X)) 1Y) o, for
input and output registers | and O respectively. In other words, Wi, ; = Y (x, 12} ye [®xy,il* Let We a = X Wj 4
be the combined weight of 4’s queries on x1 or x as query points in Hg. We will show the following claim.

Claim 7.6. IE[Wg, 4] is negligible in A.

Combining Claim 7.6 with the fact that q 4 is a polynomial in A, we conclude that g4 - IE[Wg 4] is also negligible in
A. Hence, by Theorem 2.1, where we treat T = g4, we conclude that changing the oracle output for 4 at x; and xp, in
Hg results in a statistically indistinguishable output distribution, i.e., {bg, bc,b}. Since the only difference between Hg
and Hy is that the oracle outputs for 4 at x1 and Xy, are different, we conclude that the output distribution in Hyg is
computationally indistinguishable® from that of H;. Hence,

lp7 — psl = €7(A),

for some negligible function €7(-).
Next, we prove Claim 7.6 to complete the proof of indistinguishability for Hg and Hy.

Proof of Claim 7.6. Let Wy 5 be the combined weight of 4’s queries on x; or xp, the challenge points for B and C, as
query points in Hy, i.e., Wy 4 = Zie[qﬂ] Wé, , Where for each i € [q4], W/fq denotes the total weight of i*" query on x;
or xp. In Hy, x1 and x, can be sampled after 2’s queries as x1, xp are sampled independent of 4’s input state. Therefore,
since X1, X, are sampled from Dy, there exists a negliglbe function negl(-) defined as negl(A) := 2~ min-entropy(Dx)
such that for each i € [qa], E[W], ;] <2-negl(A), i.e., E[Wo,a] < 241 - negl(A), which is negligible in the security
parameter A.

Next consider, the following distinguishing attack (?4, B, C):

1. 4 runs 4 on the received program o from the challenger and performs the oracle queries from 4 and feeds the

output back to 4 up until the jth query, where j <i [9.4] is sampled ahead of time. On the jth query, 4 measures
the query input register |. Let the measurement outcome be x’. 4 sends x’ to both B and C.

2. Bon receiving string ¥’ from 4 and a challenge string x; from the challenger checks if x; = x’, and if so output
0 else outputs 1.

3. C on receiving string x” from 4 and a challenge string x, from the challenger checks if x, = x/, and if so output
0 else outputs 1.

For any h € {0,6}, let the probability that with adversaries (4, B, C) in Hy,, B and C both output the string 1, be
11
Ph -

Since the output distribution of Hg is computationally indistinguishable from that of Hy, |]0é1 — p(l)l\ must be
negligible in A. However, note that by definition of 4, B, C, B and C both output 1 if and only if x’, the measurement
outcome of a random query of 4, satisfies ¥’ # x1 and x’ # xp, i.e., x" & {x1,x2}.

Hence, for any h € {0,6},

: E[W, E[W,
pil=1-Pr[x' € {x,x2}] =1-E 5 E[W.]=1-) EWial _ 1 - EWal
i<=[qa] ’ i€[ga) E qa
Therefore, by the computational indistinguishability of Hy and Hg, we conclude that Wﬂ = \pél — p(lJl| is

negligible, which implies that |IE[Wg 4] — IE[W) 4]| must be negligible in A because g4 is polynomial in A. Moreover
since [E[W) 5] is negligible as concluded above, IE[Wj 4] must be negligible in A. O

26The reason this indistinguishability is computational rather than statistical is that Claim 7.6 holds only for computationally bounded 4.

50

Hjy: this hybrid is defined as follows:
» Sample x1 <+ Dx and x, < Dy independently, and b & {0,1},

» 4 gets oracle access to C, and the state UP0.0Ef(l/\, é) where if b = 0, C = C, C + DCirc(l/\), else
= $
C <« PrOgramcmzonical(C' (xl,xz), (}/1/]’/2))’ where Y1, Y2 < Y, C «+ DCirc(l)\)~

* After the splitting experiment, along with oracle access to C \ {x1} and C \ {x,} respectively, B and C receive
(x1,C(x1)) and (xp, C(x7)) respectively.

* (B, C) output (bg, be).

The output of the hybrid is bg, b, b. Denote the probability that bg = b = b to be ps.

The only difference between H; and Hg is that we replace Program with Program ,,,onica» and since the
output circuits of both Program and Program,,,,onicar have the same functionality by the puncturing correctness (see
Definition 3.10), by the iO security of UPO, the outputs of H; and Hg must be computationally indistinguishable, and
hence,

lp7 — psl = es(A),

for some negligible function eg(-).

Reduction to UPO Let (4, B, C) be an adversary in Hg. We will construct a reduction adversary (R4, R3, R¢) in
the Dx x Dx-generalized UPO anti-piracy game.

» R4 samples a circuit C < Dcirc(1*) and y1,y2 & and sends (C,1y,,1y,) to the challenger, where the
programmed circuits (at the points of puncture) 1y, and 1,, are the constant circuits always outputting y1 and y2,
respectively.

* On receiving an obfuscated state p from the challenger, R 4 runs g ¢ < ﬂlc(p) using the knowledge of C, and
sends the corresponding registers of o to B and C along with the description of C to both B and C.

* R4 on receiveing x5 computes iz <— C(x5) and runs bg <— FC\{x1} (03, (x3,y5)) using the knowledge of C
and x1, and outputs bg.

e R, oninput x, does the symmetrical version of above using x., C and o, and outputs b.

Clearly, the view of (4, B, C) as simulated above by (R4, R3, R¢) is the same as their view in Hg, and the event
b = bg = b in the above UPO game exactly corresponds to the event b = bg = b in Hg which completes the proof
of (Dc¢jre X Dx X Dx)-oracular-pseudorandomness-style copy-protection anti-piracy.

For the “Moreover” part, we note that if we can start from the (Dcjre X Dx X Dx)-oracular-pseudorandomness-style
CP+ antipiracy game, then following the same hybrid arguments as above, we will get to the following “+”-version of
Hg. The differences between Hg and H;{ are indicated in blue.

ng : this hybrid is defined as follows:

« Sample x1 < Dx and x, < Dy independently, and bg, b, & {0,1},

* 4 gets oracle access to C, and the state UP0.0Ef(l)‘, 6), whereif by = b = 0, C=C,C+ DCirc(l)‘), ifbg =
bC =1,C«+ PrOgramcanonical(CI (X],Xz), (yl/yZ)), ifbg =0, bC =1,C« PrOgramcanonical(CI (XZ)/ (3/2))’
and if by = 1,b, = 0, C <= Program u,,0nicar (C, (x1), (y1)), where y1, y2 & Y, C < Dcire (1Y),

After the splitting experiment, along with oracle access to C \ {x1} and C \ {x,} respectively, B and C receive
(x1,C(x1)) and (x3, C(x2)) respectively.

(B, C) output (b, bl.).

51

The output of the hybrid is bg, b, blg, bl-. Denote the probability that bjy & bl. = bs & b be pyg .

By the same hybrid arguments as between Hy and Hg, we get that the success probability in the original
(Dcire X Dx x Dx)-oracular-pseudorandomness-style CP+ antipiracy game is negligibly close to p; . Moreover, it is
easy to check that the success probability of the same reduction adversary (R4, Rg, R¢) as described above, but in
the Dx x Dx-generalized-UPO™ antipiracy game, is also pgr. Hence, by the Dx x Dx-generalized-UPO™ antipiracy
of UPO, the success probability in the original copy-protection+ antipiracy game is at most 1/2 + negl(A) for some
negligible function negl(-). O

Combining Theorem 7.4 with Theorems 3.17 and 5.1, we get the following corollary.

Corollary 7.7 (Copy-protection with pseudorandomness-style CP+ anti-piracy from concrete assumptions). Let
X = {0,1}" where n = n(A) is a polynomial in A, and let Dy be a high min-entropy distribution on the input space
X and (Circ, Puncture) be a puncturable circuit class satisfying 2-point m-bit (Dx, Dciyc)-pseudorandomness-style
puncturing security (Definition 7.1). Then, assuming the existence of polynomially secure iO and the LWE assumption,
there exists a copy-protection scheme for Circ that satisfies (Dcirc X Dx x Dx)-oracular-pseudorandomness-style CP+
anti-piracy (Definition 3.4). Moreover, if Dx = Uniformy, then we can replace the LWE assumption with the existence
of OWFs.

8 Oracular Unpredictability-Style Copy-Protection

We begin with recalling the copy-protection construction [AB24] from UPO for puncturable circuit classes that satisfy
2-point m-bit unpredictability-style puncturing security?’, for m € w(log(A)).

Theorem 8.1 (Adapted from [AB24, Theorem 56]). Let Dyx be a high min-entropy distribution on the input space X and
(Circ, Puncture) be a puncturable circuit class satisfying 2-point m-bit (Dx, Dciyc)-unpredictability-style puncturing
security, where m € w(log) (see Definition 7.1). Then any UPO scheme UPO = (Obf, Eval) that satisfies (Dx x D)
UPO anti-piracy for Circ with respect to Puncture (see Definition 3.12), is also a (Dcire X Dx X Dyx)-unpredictability-
style copy-protection scheme for Circ (see Definition 3.1) with CopyProtect = UPO.0bf and Eval = UPQ.Eval.?

Combining with Theorems 3.17 and 5.1, we get the following immediate corollary.

Corollary 8.2. Ler X = {0,1}" where n = n(A) is a polynomial in A, and let Dy be a high min-entropy distribution
on the input space X and (Circ, Puncture) be a puncturable circuit class satisfying 2-point m-bit (Dx, Dcirc)-
unpredictability-style puncturing security (see Definition 7.1). Then, assuming the existence of polynomially secure iO
and the LWE assumption, there exists a copy-protection scheme for Circ satisfying (Dci.c X Dx X Dx)-unpredictability-
style CP anti-piracy (see Definition 3.1). Moreover, if Dy = Uniformy, then we can replace the LWE assumption with
the existence of OWFs.

Remark 8.3 (Upgrade to oracular CP anti-piracy). The anti-piracy notions for copy-protection considered in [AB24] are
non-oracular, which is reflected in the copy-protection anti-piracy notions yielded in Theorem 8.1 and Corollary 8.2.
However, by the same hybrid arguments as in the proof of Theorem 7.4 (Hy4 to Hy), the copy-protection anti-piracy
guarantees provided in Theorem 8.1 and Corollary 8.2 can be upgraded to satisfy oracular unpredictability-style CP
anti-piracy.

8.1 Progmaskable circuit classes

In [AB24], the authors introduced the notion of Preimage-sampleability for evasive functions that captures a wide
variety of evasive circuit classes, including point functions and k-point functions. In this section, we will study

27In [AB24], the authors only considered a single definition of puncturing security, that coincides with 2-point m-bit unpredictability-style
puncturing security that we defined in Definition 7.1

281 [AB24], the authors only considered the uniformly random challenge distribution, i.e., Dx = Uniformy, but it can be easily checked that their
proof also generalizes to any high min-entropy challenge distribution Dy, as long as the puncturing security and UPO anti-piracy also holds with
respect to Dx.

52

the notion of Progmaskability, which can be intuitively seen as a generalization of Preimage-sampleability beyond
evasive circuit classes and beyond boolean output functions, such that it captures other classes of circuit classes,
such as puncturable secure circuit classes (see Theorem 8.18). Moreover, we simplify the need for an auxiliary
circuit class in Preimage-sampleability by demanding the circuit class itself to be the auxiliary circuit class. Hence,
formally, Progmaskability is a generalization of a subclass of Preimage-sampleability where the auxiliary circuit
class and the distribution on it are respectively the same as the circuit class and the distribution on it. We note that
interesting instantiations of Preimage-sampleable evasive circuit classes, such as k-point functions, satisfy this subclass
of Preimage-sampleability. Finally, note that Preimage-sampleability is defined with respect to a single input point. We
also generalize this aspect to consider multiple input points, and define /-point Progmaskability for any ¢ € poly(A).
These generalizations from Preimage-sampleability to Progmaskability are formally proved in Theorem 8.6.

For a circuit C : X — Y, forevery y € Y, we define C~!(y) = {x € X : C(x) = y}.

Definition 8.4. We say that a circuit class Circ is £-points (DXg,ﬁX, Dy, Dcirc)-Progmaskable if there exists an

efficient algorithm Program and an efficiently sampleable distribution Dy such that the following two distributions are
computationally indistinguishable:

» Do(1"): outputs (C,x1,...,x;), where:
- C+ Deire(1) %,
- X1,.., % < Dy (C).

« D1 (1M): outputs (C, x1,...,x;), where:
~ C ¢+ Deire (1Y),

- x1<—DX,...,xg<—DX,

- y1,...,yp < Dy(C,x1,...,x¢) and,

C « Program(C, (x1,...,x¢), (Y1,-..,Y¢)), where:

~oon | C(x) ifx & {xq,...,x0},
C(x)_{ Yi ifx’:xll-ViE[Z[j.

When the context is clear, we will omit Dc;.. We emphasize that both the distributions DX[and Dy do depend
on the circuit C. Additionally, the distribution Dy also depends on the input x. For non-triviality we only consider
Dy(C,x1,x2,...,%,) that is different from the trivial distribution that outputs C(x1),...,C(xy).

A special case of the above definition is when the sampling procedure Dy (C, x) is defined as follows:

Definition 8.5 (Special case (half-correct distribution).). A distribution Dy(C, x) is called a half-correct distribution
or simply DYalf-correct it Dy (C, x) is sampled as follows:

* With probability 0.5, output y; = C(x;) for every i € [{] and,

* With probability 0.5, output {y1, ..., Yy}, where y; & Y\ {C(x)} foreveryi € [{].
Next, we discuss some interesting instantiations of Progmaskable circuit classes.

Theorem 8.6. Any Preimage-sampleable evasive circuit class (Circ, Dciyc) with respect to itself (i.e., the Preimage-sampleability
holds with respect to (Circ, D¢) as the auxilliary circuit class and distribution) and puncturing algorithm Program

is 1-point 1-bit (D;Wswe, Uniformy, D;}a'f'co"e‘:t, Dcirc)-Progmaskable with respect to Program, where Program

on input (C,(x1,...,%¢), (Y1,---,Y¢)) checks if y; = C(x;) for every i € [{] and if so outputs C, else outputs
Program(C, (x1,...,x¢), (y1,---,Y¢)), and DE"1 is defined as:

1. With probability 1/2, DE""1%¢(C) outputs x & S(C), where S(C) is the set of all preimages of 1 under C.

PWLOG, we view Dcjrc as outputting a key or index that corresponds to the circuit C in the circuit class Circ.

53

2. With probability 1/2, D5?57%¢(C) outputs x & x

Proof of Theorem 8.6. By definition of Program and Dg‘{a'f'cc’"e“ (see Definition 8.5), we can decompose the distribution
D1 in Definition 8.4 with respect to (ngsm, Uniformy, Dyaif-correct D,) as:

1. With probability 1/2, outputs C, x where C ¢ Dc¢jr(1*), and x S x

2. With probability 1/2, outputs C, x where C < Program(C,x,1 —),y < C(x), C < Dcirc(1*), and x &x.
We call the above sampler Hy, and consider the following hybrid samplers.
H12

1. With probability 1/2, outputs C, x where C < Dc¢jr(1*), and x S x

2. With probability 1/2, outputs C, x where C < Program(C, x,1), C « Dcire(1), and x < X.

Since Circ is evasive, C(x) = 0 for C < Deirc (1), and x & X with overwhelming probability. Hence, Hy, i.e., Dy
with respect to (D,L;WSW, Uniformy, D;}a'f'co”e‘:t, Decire) is statitically indistinguihsable from Hy, i.e., the outputs of
Hj and H; are statistically indistinguishable.

H21

1. With probability 1/2, outputs C, x where C < Dcjr(1*), and x S x

2. With probability 1/2, outputs (C, x) where x < S(C), C < Dcire, and S(C) denotes the preimage set of 1
under C.

By the Preimage-sampleability property, the conditional distribution in Item 2 in Hy, is computationally indistinguishable
from Item 2 in Hy. Hence, the outputs of H; and Hy must be computationally indistinguishable.

Note that by definition of Dy in Definition 8.4 with respect to (D)E(Wsm, Uniformy, D;‘(a'f'“”ed, Dcirc), Hp is the
same as Dy. Hence, we conclude that the output distribution of D1, (which is the same as that of Hg) is computationally
indistinguishable from that of Dy (which is the same as that of Hj), which concludes the proof of Progmaskability for
Circ. O

8.1.1 k-Point Functions for k greater than 1

Consider the following class of functions Func® = {fs: {0,1}" — {0,1} : S C {0,1}",|S| = k}, where fs is
defined as follows:
1 ifxes,

fS(x) - { 0 otherwise.

There is an efficiently computable circuit class Circ that implements Fu nck as long as k is polynomial in n1. That is, for
every fs, there is a unique circuit Cg whose implementation is specified as follows: on input x,

e If x € S, output 1.

* Else, output 0.
Define the sampler for D, « as follows: first sample a uniformly random set S C {0, 1}" such that |S| = k. Output S.
Definition 8.7. We define the distribution D)EKX”SW(S) which samples as follows.

 With probability 1/2, sample x1, . .., Xy & (;) see Section 2.

54

* Otherwise, sample x; & ({0,1}"\S) independently for each i € [{].

We consider Dg}a'f'w"w to be the half-correct distribution (see Definition 8.5), and Uniformx to be the uniformly
random distribution on X.

Remark 8.8 (Viewing obfuscated keyed-circuit classes). For a circuit class Circ, we consider the obfuscated circuit class
iO(Circ) := {iO(1*,C) : C € Circ}, where we view iO(Circ) as indexed with {C, 7} where C is an index in Circ
and r is the randomness required to run the i©O compiler.

Theorem 8.9. Let k > {, where k := k(A), £ := £(A) are both polynomials in the security parameter A, and let
X := X(A) be a super-polynomial-sized domain (in the security parameter). Let Circk := {CS}Se([if]) be a set

of circuits implementing Fu nck, the set of all k-point functions on X, i.e., Boolean functions on X that have exactly
k-preimages of 1, where for each S C X, |S| = k, Cs denotes the k-point function circuit with S as the preimage of 1.

Assuming post-quantum iO exists and post-quantum one-way functions exists, iO(Ci rck) satisfies (DEvasive ¢, Uniformy, D;‘,alf'w"e‘:t, T
Progmaskability (see Definition 8.5) with respect to an efficient algorithm Program defined as follows: on input

(S, (x1,%2,...,%0), (Y1, Y2, - .., y¢)), it outputs C + iO(1*,C") where C'(x') is defined as follows:
o Ifx' = x; for some i, output y;,
e Else, output Cs(x'),

and where the distribution ﬁCirck over k-point functions is defined as:
* Sample a uniform random subset S of X of size k.

* Sample randomness r for iO and output (S,r) which corresponds to the circuit iO(1*,Cs;).

—_~—

and DEvssive (S, r) 1= D}E}’”Siw(S) where Di}’”Sive is as defined in Definition 8.7,
Proof of Theorem 8.9. We first prove the following claim.

Claim 8.10. Let D := D(A) be a super-polynomial-sized set in A. Assuming the existence of a keyed injective
U-one-way function IOWF (see Definition 2.5) with domain D, which can be constructed from post-quantum iO and
one-way functions [BPW16], the following two distributions are indistinguishable.

¢ The membership circuit iO(Cg) where S is a uniform random subset of D of size k + 1.
* The membership circuit iO(Cg) where S is a uniform random subset of D of size k.

Proof. We describe the hybrids below.
Hy: iO(Cs) where S is a uniform random subset of D of size k + 1. This is the first distribution.
H;: iO(C) where C is sampled as follows:

1. Sample a uniform subset S of D of size k.
2. Sample a uniform random point x* € D\S.
3. C + Program(S, x*,1).

Note that the distribution of C is exactly the distribution of Cg in Hy. By iO security, Hy and Hy are computationally
indistinguishable.
Hj: iO(C) where C is sampled as follows:

1. Sample a uniform subset S of D of size k.

2. Sample a uniform random point x* <i D.

55

3. C + Program(S, x*,1).

H; and H; are negligibly close because ﬁ is negligible.

Hj: iO(C) where C is sampled as follows:

1. Sample a uniform subset S of D of size k.

2. Sample a uniform random point x* i D.
3. Sample F < IOWF.Gen(1%).

4. C be the following circuit:

Cs(x) otherwise,

o=l O

where the hardcoded value y* = F(x™*).

Note that except with negligible probability over the generation of F, the functionalities of c (x) in Hy and Hj are the
same since except with negligible probability over the generation of F, F is injective. Therefore, by iO security, Hy and
Hj are computationally indistinguishable.

Hy: iO(C) where C is sampled as follows:

1. Sample a uniform subset S of D of size k.

2. Sample a uniform random point x* i D.
3. C is the circuit Cs.

Note that the circuits under i©O in H and Hy differ only at the point x*. Since every indistinguishability obfuscator is
also a single-point differing input obfuscator (diO) (see Ref. [BCP14]), by the single-point diO security of iO, if H3
and Hy are computationally indistinguishable, then there exists an algorithm that, given the circuits C from Hj and Hy
can compute x*. However, note that C in both hybrids can be computed given just y* and F, and hence we can construct
an inverter for the keyed one-way function IOWF. Hence, if H3 and Hy are computationally indistinguishable, then we
can violate the one-wayness of IOWF. Therefore, H3 and H4 must be computationally indistinguishable. [

Now we prove Theorem 8.9 using Claim 8.10.We describe the hybrids below.
Hj: This is the hybrid that describes Dy in the Progmaskability definition.

* Sample S C X uniformly at random so that |S| = k.

* Sample x7 < Uniformy, ..., x; < Uniformy.

* Sample b & {0,1}.

* Output (iO(Program(Cs, (x7,x3,...x;),(Cs(x7) ®b,Cs(x3) ®b,...,Cs(x;) b)), (x7,%5,...x})).
H;: Similar to Hy but we sample x7, ..., x; uniformly at random conditioned on them being distinct.

* Sample {x7],x3,...,%;} & ();)
* Sample b & {0,1}.
* Sample S € X\ {x{,x3,...x} uniformly at random so that [S| = k.

* Output (iO(Program(Cs, (x7,x3,...x7),(b,b,..., b)), (x],%x3,...%})).

56

Note that X = {0,1}", and since k/2" and ¢ /2" are negligible, with 1 — neg| probability in Hy, we have all x7 are all
distinct and none of them are in S. Thus Hy and H; are statistically indistinguishable.
Hj: In this hybird we modify the size of S.

e Sample {XT,XE,H-/-XZ} & ()/()

* Sample b & {0,1}.

«If b = 0, sample S’ C X\{x],x3,...x;} uniformly at random so that |S'| = k. Otherwise, sample
S" € X\{x},x3,... x;} uniformly at random so that |S'| =k — £.

* Output (iO(Program(Cg, (x7,%3,...x7),(b,b,..., b)), (x],%x3,...%})).

Using Claim 8.10 multiple times with the domain D = X\{x],x3,...x/}, we see that H; is computationally
indistinguishable from Hy.
Hj: This is the hybrid that describes Dy in the Progmaskability definition.

* Sample S C X uniformly at random so that |S| = k.
* Sample (x7,x3,...x)) < Dg?“Si”e(S).
* Output (iO(Cs), (x7,x3,...x})).

Note that in H3, the number of point with value 1 in the final outputted circuit iO (Program(Cg/, (x7,x3,...x}), (b,b,...,b)))
is exactly k. These points are S" if b = 0 and are the union of §" and {x7,...,x}} if b = 1. Note that the union of 5’
and {x},...,x}} is a uniform subset of X of size k. Thus, by iO security, this circuit is indistinguishable from iO(Cs)
for a uniform random subset S C X of size k. O

8.2 Oracular Unpredictability-Style Copy-Protection for Progmaskable Circuits
Let X = {0,1}" be the input space.

Theorem 8.11. Ler (Circ, Program) be a 2-point (DXz, Dy, Dy, Dcirc) Progmaskable circuit class, such that Dy has
min-entropy at least A° for some € > 0, and Dy is the half-correct distribution (see Definition 8.5). Then, any UPO
scheme UPO = (06f, Eval) satisfying (Dx x Dyx)-generalized UPO security for Circ with respect to Program auonical:
as well as iO security, is also a copy-protection scheme (CopyProtect, Eval) for Circ with CopyProtect = UPO.06f and
Eval = UPO.Eval, satisfying 1/ 2-0racular—1)xzrcir -unpredictable-style-CP anti-piracy, where DXZ,Cir . is defined as:

C,x1,xp < Dy Clrc(1)‘), where x1,xp <= Dy2(C) and C Deirc (17).

Proof of Theorem 8.11. The correctness of (CopyProtect, Eval) is immediate from the correctness of UPO. Next, we

prove security. We assume that Circ satisfies (Dx, Dx, Dy, Dcirc)-Progmaskability property, where Dy is a half-correct
distribution (see Definition 8.5).
We provide the proof of security below. Consider the following hybrids. The changes are highlighted in red.

Hj: this corresponds to the unpredictability-style copy-protection security experiment. Denote the copy-protection
adversary to be (4,3, C).

+ 4 gets UPO.06f (1", C) and oracle access to C, where C < Dcirc(11).
* Sample x1, X2 < Dy2(C).

* After the splitting experiment, B receives x1 and oracle access to C \ {x1}, and C receives x, and oracle access

to C\ {x2}%.

30Here oracle access to C \ S for some set of points S refers to the oracle access to a function that outputs C(z) on all points z ¢ S and outputs _L if
z€S.

57

* (B,C) output (yz,Yc).
The output of the hybrid is C, x1, X2, Y3, Y. Denote the probability that (v,) = (C(x1),C(x2)) to be po.
H: this hybrid is defined as follows:

« 4 gets UPO.06f(1*, C) and oracle access to C, where:

C <« DCirc(l/\)v

X1 < Dx, Xp < Dx.

v1,¥2 < Dy(C, x1,x2) and,
- 6 — Program(C, (x11x2)/ (y]/yZ))-

* After the splitting experiment, B receives x; and oracle access to C \ {x1}, and C receives x; and oracle access
to C\ {x2}.

o (r]g, C) output (ya;,yc)-

The output of the hybrid is C, x1, X2, Y3, J¢. Denote the probability that (ys,yc) = (C(x1),C(x2)) to be py.

From the Progmaskability property, the outputs of Hy and H; are computationally indistinguishable. Hence,

Ip1 — pol = €1(A), 4)

for some negligible function €1 (-).

H;: this hybrid is defined as follows:
« 4 gets UPO.06f (1%, C) and oracle access to C, where:
- C ¢ Deire(17),
- x1 < Dx, x» + Dx.
— Sample a bit b i {0,1} uniformly at random, and if b = 0 set C = C, else if b = 1, sample
y1 <= Y\ {C(x1)},y2 <= Y\ {C(x2)} and set,
— C « Program(C, (x1,x2), (y1,12)).

* After the splitting experiment, B receives x1 and oracle access to C \ {x1}, and C receives x, and oracle access

to é\ {x2}.
* (B,) output (ys,y¢).

The output of the hybrid is C, x1, X2, ¥, y¢. Denote the probability that (v, y¢) = (C(x1),C(x2)) to be po.

Note that Hj is the union of two events b = 0 and b = 1, each with probability half, where the event b = 1 in Hy
is identically distributed as the event y5 # C(x1) Ay # C(x2) in Hy, which happens with probability % On the
other hand, the event b = 0 in H; is computationally indistinguishable from the event y3 = C(x1) A yc = C(x2) in
H; which happens with probability %, by the io-security of the underlying UPO, UPO = (05f, Eval). Hence, by the
io-security of UPO, H; and H; are computationally indistinguishable. Therefore,

lp2 — p1] = €2(A), 5)

for some negligible function €5 (-).
H3: this hybrid is defined as follows:

58

« 4 gets UPO.06f (1%, C) and oracle access to C, where:
- C«+ DCirc(lA)’
- X1 < ﬁx, Xp < 5)(.
— Sample a bit b <i {0,1} uniformly at random, and if b = 0 set C = C, else if b = 1, sample
$ $
y1 < Y\ {C(x1)},y2 < Y\ {C(x2)} and set,
— C « Program(C, (x1,x2), (y1,v2)).
* After the splitting experiment, ‘B receives xq and oracle access to C \ {x7 }, and C receives x, and oracle access
to C\ {x2}.
* (B,C) output (yz,Yc).
The output of the hybrid is C, x1, X2, Y5, . Denote the probability that (ys,yc) = (C(x1),C(x2)) to be ps.
Since C \ {x1} and C \ {x;} differ in functionality only at x5, the challenge point for C, the only difference between
H, and Hj is that we change the oracle access to B by changing the oracle output at x».

Let g5(A) be the number of oracle queries that B makes for some fixed polynomial g5(A)3!. In Hy, for each
i € [qs], let W} , denote the total weight of i*" query on x3, where the i query can be written as Yoy Qi 1) V) o

for input and output registers | and O respectively. In other words, Wé 3 = LyeY |och,yli|2. Let W 3 =} ; Wé 5 be the
combined weight of B’s queries on x, as query points in Hy. We will show the following claim.

Claim 8.12. E[W, 4] is negligible in A.

Combining Claim 8.12 with the fact that g is a polynomial in A, we conclude that g5 - E[W, 3] is also negligible
in A. Hence, by Theorem 2.1, where we treat T = g4, we conclude that changing the oracle output for 3 at x; in

H, results in a statistically indistinguishable output distribution, i.e., {CAI, X1,X2,Ys,Yc}. Since the only difference
between Hy and Hj is that the oracle output for B at x; is different, we conclude that the output distribution in H is
computationally indistinguishable3? from that of Hz. Hence,

Ips — p2| = €3(A), (6)

for some negligible function €3(-).
Next, we prove Claim 8.12 to complete the proof of indistinguishability for Hy and Hs.

Proof of Claim 8.12. Let Wy 5 be the combined weight of B’s queries on xy as query points in Hy, i.e., Wy g =
):ie[q 5] W, 5 where for each i € [g3], Wy, denotes the total weight of it" query on x,. In Hp, x» can be sampled
after B’s queries as x» is sampled independently of B’s state and challenge x1. Therefore, since x, is sampled from

Dx. there exists a negliglbe function negl(-) defined as negl(A) := p~min-entropy(Dx(1")) gych that for each i € (93],
E[W] 5] = negl(A),i.e., E[Wpy 3] = g3 - negl(A), which is negligible in the security parameter A.
Next consider, the following distinguishing attack (4, B, Z‘):
1. Bruns B on the challenge and the state received from 4 and performs the oracle queries from B and feeds the
output back to B up until the jth query, where j & [93] is sampled ahead of time. On the jth query, B measures
the query input register |. Let the measurement outcome be x’. B outputs x’.

2. C on receiving a challenge from the challenger, outputs the challenge itself.

3I'WLOG, we can assume that B makes a fixed polynomial number of queries in all the hybrids.
32The reason this indistinguihsability is computational rather than statistical is that Claim 8.12 holds only for computationally bounded 3.

59

For any 1 € {0,2}, let the probability that with adversaries (4, B, C) in Hj,, B and C outputs the same string, be p:lq.
Since the output distribution of H, is computationally indistinguishable from that of Hy, |p§q — pgq| must be

negligible in A. However, note that by definition of B and C, they output the same string if and only if x’, the
measurement outcome of a random query of B, is the same as xp, the challenge for C. Hence, for any h € {0,2},

eq _ i 1 _ Ticlgg EWial _ E[Wy4)
P = Ei&[%]E[Wh’g} a o a

output distributions of Hy and Hj, we conclude that |

. Therefore, by the computational indistinguishability of the

% — %| is negligible in A, which implies that

|E[Wa,5] — IE[W,]| must be negligible in A, because g is polynomial in A. Moreover since IE[W) 5] is negligible as
concluded above, IE[W, 5] must be negligible in A. O
H,: this hybrid is defined as follows:
« 4 gets UPO.06f (1%, C) and oracle access to C, where:
- C + Dairc(17),
- x1 < Dy, xp < Dx.
— Sample a bit b i {0,1} uniformly at random, and if b = 0 set C=C elseifb =1, sample
y1 Y\ {C) Ly & Y\ {C(x2)} and set,
- C« Program(C, (x1,x2), (y1,42)).

o After the splitting experiment, B receives xq and oracle access to C \ {x7}, and C receives x, and oracle access
to C\ {x2}.

* (B,C) output (yz,Yc).

The output of the hybrid is C, x1, X, ¥, y¢. Denote the probability that (v, 1) = (C(x1),C(x2)) to be py.

Since C \ {x} and C \ {x} differ in functionality only at x, the challenge point for 3, the only difference between
H3; and Hy is that we change the oracle access to € by changing the oracle output at x1.

By analogous arguments as in the proof of indistinguishability of H, and H3 but with the roles of B and C switched,
we can conclude that the outputs of H3 and Hy are computationally indistinguishable and hence,

|pa — p3l = €s(A), (7

for some negligible function e4(-).
Hs: this hybrid is defined as follows:

+ 4 gets UPO.06f (17, C) and oracle access to C, where:
— C « Dcirc (1),
- x1 + Dx, x, + Dx.
— Sample a bit b & {0,1} uniformly at random, and if b = 0 set C = C, else if b = 1, sample
y1 € Y\ {C(x1)}ya & Y\ {C(x2)} and set,
— C « Program(C, (x1,x2), (y1,v2)).

* After the splitting experiment, ‘B receives xq and oracle access to C \ {x7}, and C receives x, and oracle access
to C\ {x2}.

o (r]g, C) output (nyryC)'

60

The output of the hybrid is C, x1, X, Y3, . Denote the probability that (ys,yc) = (C(x1),C(x2)) to be ps.

Since C and C differ in functionality only at x; and x», the respective challenge points for B and C, the only
difference between H, and Hj is that we change the oracle access to 4 by changing the oracle output at x and x5.

Let g4(A) be the number of oracle queries that B makes for some fixed polynomial g4(A). In Hy, for each i € [g4],
let Wj;, , denote the total weight of i" query on x; or x,, where the i/ query can be written as Yoy Ay, X)) 1Y) o, for
input and output registers | and O respectively. In other words, Wi 2= Yxe (21,00} y€Y |ocx,y,,<|2. Let Wyq =13 Wﬁ/ 2
be the combined weight of 2’s queries on x1 or x; as query points in Hy. We will show the following claim.

Claim 8.13. E[W, 4] is negligible in A.

Combining Claim 8.13 with the fact that 44 is a polynomial in A, we conclude that q 4 - E[W, 4] is also negligible
in A. Hence, by Theorem 2.1, where we treat T = g4, we conclude that changing the oracle output for 4 at x; and xp,
in Hy results in a statistically indistinguishable output distribution, i.e., {6, X1,%X2,Y3, yc}. Since the only difference
between Hy and Hs is that the oracle outputs for 4 at x1 and x», are different, we conclude that the output distribution
in Hy is computationally indistinguishable® from that of Hs. Hence,

lps — pal = es(A), ®)

for some negligible function €5(-).
Next, we prove Claim 8.13 to complete the proof of indistinguishability for Hy and Hs.

Proof of Claim 8.13. Let Wy 4 be the combined weight of 4’s queries on x1 or X, the challenge points for B and C, as
query points in Hy, i.e., Wp 7 = Zie[qz] Wé, , Where for each i € [q4], W; denotes the total weight of i query on x;
or xp. In Hy, x1 and x, can be sampled after -2’s queries as x1, xp are sampled independent of 4’s input state. Therefore,
since x1, x, are sampled from Dy, there exists a negliglbe function negl(-) defined as negl(A) := 2~ min-entropy(Dx)
such that for each i € [g4],]E[Wé/ﬂ] < 2-negl(A),ie., E[Wp 4] <2q4 - negl(A), which is negligible in the security
parameter A.

Next consider, the following distinguishing attack (4, B, C):

1. 4 runs 4 on the received program p from the challenger and performs the oracle queries from 4 and feeds the

output back to 4 up until the jth query, where j <i [g4] is sampled ahead of time. On the jth query, 4 measures
the query input register |. Let the measurement outcome be x’. 4 sends x’ to both B and C.

2. Bon receiving string ¥’ from 4 and a challenge string x; from the challenger checks if x; = x’, and if so output
0 else outputs 1.

3. C on receiving string x’ from 4 and a challenge string x, from the challenger checks if x, = x’, and if so output
0 else outputs 1.

For any i € {0,4}, let the probability that with adversaries (4, B, Z‘) in Hy,, B and ¢ both output the string 1, be
11
Py -

Since the output distribution of Hy is computationally indistinguishable from that of Hy, |p}11 — p(l)l\ must be
negligible in A. However, note that by definition of 4, B, C, B and ¢ both output 1 if and only if x’, the measurement
outcome of a random query of 4, satisfies ¥’ # x1 and x’ # xp, i.e., x’ & {x1,x2}.

Hence, for any h € {0,4},

: E[W!
pit =Pr[x & {x1,x0}] =1-Pr[x' € {x;, 02} =1-E E[W)] =1~) Wz =1-]E[Wh’ﬂ].
l(—[(b{] ie[qﬂ] qa da

Therefore, by the computational indistinguishability of Hyg and Hy, we conclude that [EWs2] “EWoall _ Ipit — pbt|
is negligible in A, which implies that [E[W, 4] — E[W 4]| must be negligible in A, since ¢4 is a polynomial in A.
Moreover since IE[W) 5] is negligible as concluded above, IE[W, 4] must be negligible in A. O

33The reason this indistinguihsability is computational rather than statistical is that Claim 8.13 holds only for computationally bounded 4.

61

Hg: In this hybrid, we change the algorithm Program with the cannonical algorithm Program_,,onical» 1-€., Hg is
defined as follows:

+ 4 gets UPO.06f (17, C) and oracle access to C, where:
— C « Dcirc (1),
- x1 + Dx, x, + Dx.
— Sample a bit b <i {0,1} uniformly at random, and if b = 0 set C = C, else if b = 1, sample
y1 & Y\ {C(x1)}ya & Y\ {C(x2)} and set,
= C + Program yonical (C, (x1,%2), (y1,¥2))-

* After the splitting experiment, ‘B receives xq and oracle access to C \ {x7}, and C receives x, and oracle access
to C\ {x2}.

N (r]g, C) output (ya;,yc)'

The output of the hybrid is C, x1, X2, ¥, y¢. Denote the probability that (v, 1) = (C(x1),C(x2)) to be ps.

The only difference between Hs and Hyg is that we replace Program with Program,;;,onicar» and since the output circuits
of both Program and Program,,;,onicar have the same functionality by the puncturing correctness (see Definition 3.10),
by the i0 security of UPO, the outputs of H5 and Hg must be computationally indistinguishable, and hence,

Ipe — ps| = €s(A), ©

for some negligible function € ().
Observe that from the (Dx x Dx)-generalized UPO security of UPO, pg is at most % + negl(A). In particular, in the

reduction to the generalized UPO, the reduction adversary (R, R, R) against the (Dx x D)-generalized UPO
security of UPO uses the adversary (4, B, C) in Hy in the following way.

1. R4 samples C +— Dcirc(1*) and sends C along with the circuits pig,, () and pig,.() for R, R¢ & [2F — 1] where
for any r € [2€ — 1], pt,(x) outputs the binary representation of ((C(x) +7) mod 2F)! element of of {0,1}¥
and for any vector z € {0, 1 }k , z denotes the representation of z in Z.

2. R 4 upon receiveing the obfuscated program, runs 4 on the program while simulating oracle access to C to get a
state (03 ¢) and finally outputs 05, along with the description of C.

3. Ry (respectively, R) on receiving xq (respectively, x») as the challenge from the challenger, and state oz
(respectively, o¢) from R 4, runs B on oy (respectively, C on ¢¢) by simulating oracle access to C \ {x1}
(respectively, C \ {x2}) using C and x; (respectively, x7).

4. Ry (respectively, R) checks if the output of B (respectively, C) is C(x71) (respectively C(x7)) and if so, outputs
0, else, outputs 1.

Since C = Cinthe b = 0 case in Hg, the event (y3,y¢) = (C(x1), C(x2)) in the b = 0 case in Hg corresponds to
the event where R and R~ both output 0 in the unpunctured case of the above generalized UPO-security game for
UPO with adversaries (R4, R, R¢), i.e.,

Pr[R4 and R output 0 | Unpunctured] = Pr {(yg,yc) = (C(x1),C(x2)) | b=01in Hé] (10)

Next since in the b = 1 case in Hg, C(x;) # C(x;) forboth i = 1 and i = 2, the event (ys,y¢) = (C(x1),C(x2))
inthe b = 1 case in Hg implies the event y5 # C(x1) Ayc # C(x2) inthe b = 1 case in Hg, which in turn corresponds

62

to the event where R4 and R - both output 1 in the punctured case of the the above generalized UPO-security game for
UPO. Hence we conclude that,

Pr[Rg and R output 1 | Punctured] = Prlys # C(x1) Ayc # C(x2) | b =1 in Hg]
> Pr[(ya yc) = (C(x1),C(x2)) | b = in Hy. (an

Therefore, we conclude by the (75X X 75X)—generalized UPO-security of UPO, there exists a negligible function
negl(+), such that

1/2+ negl(A)

S Pr[R and R output 0 | Unpunctured] 4+ Pr[R 3 and R output 1 | Punctured]

- 2

_ Prfm o) = (C), C(x2) | b = 0in Ho] +Pr[(s ye) = (€lx1), Clxz)) | b= 1in H]
2

By (10) and (11).
= Pe-

Therefore, by the hybrid arguments (Eqgs. (4), (5), (6), (7), (8), and (9)), po < % + @gl (A) for some negligible function

neg (-).
0

Combining Theorem 8.9 and Theorem 8.11, we can prove that k-point function families can be copy-protected.
Corollary 8.14. Let k = k(A) be a polynomial in the security parameter such that k > 1, and let Circk := {CS}SE([X])
k]

be a set of circuits implementing Fu nck, the set of all k-point functions on X, i.e., Boolean functions on X that have
exactly k-preimages of 1, where for each S C X, |S| = k, Cs denotes the circuit corresponding to the k-point function
with S as the preimage of 1.

Then any UPO scheme UPO = (0bf, Eval) satisfying (Uniformy x Uniformy)-generalized UPO security for Circk
with respect to Program ., ,onical, @ well as iO security, is also a copy-protection scheme (CopyProtect, Eval) for Circk

with CopyProtect = UPO.Obf and Eval = UPO.Eval, satisfying Oracular—Dig‘gi:fk-unpredictable-sryle anti-piracy,

where Di;’“é’iek is defined as: S, x1,xp < Dﬁgﬂg;’fg(ﬂ), where S < (;f) and x1, Xy < D};’”S“’E(S), where Dgﬁ’“swe
7 g 7
is as defined in Definition 8.7.

Proof of Corollary 8.14. The correctness of (CopyProtect, Eval), where recall CopyProtect = UPO.06f and Eval =

UPO.Eval, immediately follows from the correctness of UPO.

Next, we prove oracular-Dig”Cvaek -unpredictable-style CP anti-piracy of (CopyProtect, Eval) for Circk.
,Circ

Let iO be a post-quantum iO scheme, and consider the circuit class i©O (Circk), where each key is viewed as (S, 1)
where S € ()k() is an index for of a cicruit in Circ* and 7 is a string of size that of the randomness needed to run iQ

compiler. Let ﬁCirck be a distribution on i O(Circk) and Program be a programming algorithm for i(’)(Circk), defined
as follows:

. ﬁC' « outputs S, ¥ where S & ()k()’ and r & {0,1}* where w is the length of the randomness required to run
irc .
the 1O compiler.

. ng;a/m is defined as follows: on input ((C,r), (x1,...,%¢), (M1,.-.,}¢)), Where pq, ..., jg are programming

—_~—

circuits for the punctured points, Program computes y; < u;(x;) for every i € [¢], and outputs C «
Program(C, (x1,...,x¢), (Y1,---,Y¢))-

- If x’ = x; for any i € [{], output y;,
— Else, output C(x').

63

—_—

By Theorem 8.9 since k > 2, we conclude that i (’)(Circk) withrespect to Program is (DEU”SiveXz, Uniformy, Dg}a'f’c"”e“, 5Circk)-

Progmaskable circuit class where Dg}a'f'co"‘xt is the half-correct distribution (see Definition 8.5), and DEvasive, (S, r) :=
Dig“SiUg(S) where szgﬂsi”e is as defined in Definition 8.7. Therefore, by Theorem 8.11, we conclude that

(CopyProtect, Eval) satisfies 1/2-oracular -DEZ’”SiUEleGmk-unpredictable-style-CP antipiracy for iO(Circ), where

P

DEvasive ;e first samples S, 7 DeEvasive (11 and then samples x7,xp < DEUsive 5 (S, 7)), ie., x1, 27
Eoasi
Dx'gaszve (S) .
However, by the iO-security of UPO, we can move to a hybrid where in the oracular-copy-protection anti-piracy

game, the challenger after sampling (S, 7) < DEU”SiUECier(l)‘), instead of running CopyProtect on iO(Cs;7), runs
CopyProtect on Cg after sufficient padding to match the circuit size of iO(Cs; r); and the winning condition remains
the same. Clearly, by the iO security of UPO, the output of the copy-protection adversary, even in the presence of the
correct output values at the challenge points, must be computationally indistinguishable from that of the real game, and
hence the winning probability of the adversary in this hybrid is at most % up to negligible factors. However, note that
the hybrid game is the same as the oracular—Dizz’“CS;ffk—unpredictability—style—CP anti-piracy game of (CopyProtect, Eval)

for Circk. Hence, (CopyProtect, Eval) satisfies oracular—Dig”‘Csf:’cek -unpredictability-style-CP anti-piracy for Circ.

O
Combining Corollary 8.14 with the “Moreover” part of Theorem 5.1, we immediately get Corollary 8.15.

Corollary 8.15. Let X = {0,1}" where n = n(A) is a polynomial in A, and let k = k() be a polynomial in the
security parameter such that k > 1. Let Circk .= {CS}SG([’,S]) be a set of circuits implementing Funck, the set of all

k-point functions on X where for each S C X, |S| = k, Cs denotes the circuit corresponding to the k-point function with
S as the preimage of 1.
Then, assuming the existence of polynomially secure iO and the OWFs, there exists a copy-protection scheme

for Circ® that satisfies oracular-D)’ig"é_i:’:k-unpredictable-style-CP anti-piracy (see Definition 3.1), where Di;’“cs’:ﬁ is
Sl ,C

defined as: S,x1,%y D}’i;"gff(ﬂ), where S & ()k() and x1,%Xp Dﬁgﬂm(s), where D)’i;’“m is as defined in
Definition 8.7.

8.3 Relation between Progmaskable and Puncturable Circuits
First, we note the following property of 1-point pseudorandomness style puncturable secure circuit class.

Lemma 8.16. For any circuit class Circ that satisfies 1-point m-bit (Dx, Dcirc)-pseudorandomness style puncturing
security (with respect to Puncture), the following holds:
{C,x,C(x)

7 {C,x,Y} (12)

}C\HPU ncture(C,x),xeDX,ChDCirc (1)‘ Puncture(C,x),x<—'DX,Y£ Y\{C(x) } :
Proof of Lemma 8.16. Let the ensembles in the LHS and the RHS of (12) be Dy and D1, respectively. Moreover, let
D5 be the ensemble R

{C, X, Y} § -
Puncture(C,x),x<Dx,Y<=Y

Hence, for any given distinguisher 4, we get

64

_Pr [a(Cxy)=1]—- _Pr [,’4(6, x,y) =1]
{Cxy}Dy {Cxy}+D;

1 ~ 1
1-—— Pr 4C,x,y)=1—-(1— — Pr a4(C,x,y) =1
zm) {@,x,y}eDg[(y)] (2m> {(f,x,y}<—D1[(y)]

1 ~ 1 ~
1—— P a4(C,x,y) =1| + — P a4(C,x,y) =1
(2,ﬂ) P BCry =1t gy Pr [aCry) =1

1 . 1 R
1- — Pr [a(Cxy)=1+-- Pr [a(Cxy) =1
(Zm) {é,x,y}reDl[(=1 2m {é,x,y}LDO[(y)]) ‘

Pr [a(C,x,y) =1]

{élxry}HDO
1 ~ 1 ~
_ ((1 - m) _Pr [alCxy) =1+ Pr [4A(Cxy)= 1]) ‘
2 {Cx,y}+D;q 2 {Cx,y}«Dy
=| pPr [a(Cxy)=1—- _Pr [a(Cxy) =1]
{Cx,y}«+Dy {Cx,y}«Dy
< negl(A),

for some negligible function negl(-), where the last equality follows from the above-mentioned formulation of D5,
and the last inequality follows from 1-point m-bit (Dx, Dcir)-pseudorandomness style puncturing security of Circ.
Therefore, we conclude that,

~ ~ (A
| P [aCxy)=1- Pr [aCxy) =1< 2 (1) <2 negl(7),
{Cxy}«Dy {Cxy}«D 1-— m
which is also negligible in the security parameter A. Hence, we conclude that D1 ~, Dy. O

Using Lemma 8.16 we can prove the following theorem for 1-point pseudorandomness-style puncturable circuits.

Theorem 8.17 (Different string pseudorandomness from 1-point pseudorandomness-style puncturable circuits).
Let iO be a post-quantum iO scheme, and let { := {(\) be a polynomial in the security parameter, A. Then, for any
circuit class Circ that satisfies 1-point m-bit (Dx, Dcirc)-pseudorandomness style puncturing security (with respect to
Puncture), and up to sufficient padding of the punctured circuit before running the iO compiler, the following holds:

{C, (xl, ey xé)r (C(xl)r s C(xg))}é(—iO(6),6<—Puncture(C,(xl,...,Xg)),
X1%Dx,...XgFDX/CF'DCirC(lA)
e {é, (x1, “e /xﬁ)/ (Yl/ ceey Yg))}(;i—zo(é)

$ $
Y1 4=\ {C(x1)},.. Yo =Y\ {C(x0) },
x14Dy,...xp<Dx,C<Dcirc (1/‘)

13)

C Puncture(C,(xl,...,xl)),'

Proof of Theorem 8.17. We consider ¢ + 1-hybrids, Hg, Hy, ..., Hy, where for every i € {0, 1,2,.. .,é}, H; outputs
the ensemble:

{6r (xl/ v /xf)r (C(xl)r o /C(xé—i)ryf—i-‘rlr .. /YZ)}/

where
C + i0(C),C « Puncture(C, (x1,..., %)), Y; < Y\ {C(x))}, ¥ —i<j<é,

65

xij < Dx, Vi€ [f], C <« Deire(17).

upto sufficient padding of the punctured circuit before running the iO compiler on it. Since the outputs of Hy and H, are
the same as LHS and RHS, respectively, of (13), it is enough to show that for every i € {0, 1,...,0— 1}, the outputs of
H; and H; ; are computationally indistinguishable.

To do that, fixani € {0,1,...,¢ — 1}. We consider the following hybrids:
H? : This is the same as H;.

Hilz In this hybrid, we compute the obfuscated circuit differently, i.e., the hybrid outputs

{é, (x1,...,x0),(Y1,..., Y0},

where as before,
Y« Clx),V1<j<l—i, ¥;EY\{Clxp}V—it1<j<C,

%« Dy Vie[l], C<« Dee(1Y), butC + iO(C),

where C is the circuit that has 6xH hardcoded in it where 6,%1. < Puncture(C, x,_;), such that on every x €
{x1,..., %}, Coutputs L and onevery x € X\ {xy,..., %/} C outputs Cy, ,(x).

Note that across hybrids, H? and Hil, we did not change the functionality of C, hence by the iO security of iO, the
outputs of H? and Hll must be computationally indistinguishable.
H%: In this hybrid, we change the distribtution on Y,_;, i.e., the hybrid outputs

(G, (x1,), (Ye, . Y0)),

where
Y Clx)Vi<j<t—i—1, Y;EY\{Clx)}V—i<j<i,

%« Dx,¥i€ [f], C+« Dgirc(11), and C + iO(C),

where C is the circuit that has 69%1‘ hardcoded in it where (’fo < Puncture(C, x,_;), such that on every x €
{x1,...,x,}, Coutputs L and on every x € X\ {x1,...,x,} C outputs GXH (x).

Since Circ satisfies 1-point m-bit (Dx, Dcir)-pseudorandomness style puncturing security (with respect to
Puncture), by Lemma 8.16, the outputs of Hl-1 and Hi2 must be computationally indistinguishable. This is because, given

any distinguisher 4 that distinguishes between the outputs of Hll and HZZ, we can construct the following distinguisher
B that distinguishes between the LHS and RHS distributions in Lemma 8.16 (respectively, denoted as Dy and D1),
with the same distinguishing advantage as 4, as follows. Given a sample C,/,x’,Y’, B samples xj <= Dx for every

j € [€]\ {¢—i}inanIID fashion, and set x,_; := x’. Then B generates C < iO(C) where C is the circuit that has C,
hardcoded in it, such that on every x € {x1,...,x,}, C outputs L and on every x € X\ {x1,...,x,} C outputs C(x).

Next, forevery 1 < j < £ — i, Bsamples Y; <— C(x;), and for every £ —i < j < {, samples Y; & Y \ {C(x;), and sets
Y,_; := Y’. Finally B runs 4 on C, (x1,...,%¢),(Y1,...,Yy), and outputs the outcome. Clearly, if éx/, x',Y" + Dy,
then the input of 4 has the same distribution as Hil and if C,/, x', Y’ <— Dy, then the input of 4 has the same distribution
as Hiz. Hence, B has the same advantage in distinguishing Dy and D1, as 4 has in distinguishing the outputs of H} and

2
H:.
H? : In this hybrid, we compute the obfuscated circuit differently, i.e., the hybrid outputs

{C, (xl, .. .,XZ), (Yl,. . .,Yg)},

where

Y CrpV1<j<t—i—1, Y, &Y\{Cx)}Vl—i<j<l x+DxViell

66

and C < Dcirc(1), but C + iO(C) where C < Puncture(C, (x1,...,x;)). Note that across hybrids, H? and

H? , we did not change the functionality of C, hence by the iO security of i, the outputs of HZZ and H? must be
computationally indistinguishable.

However, note that H? is the same as H; 1. Therefore, by hybrid, arguments we conclude that the outputs of H; and
H; ;1 are computationally indistinguishable. Since i € {0,1,...,¢ — 1} was arbitrary we conclude that the same holds
forevery i € {0,1,...,¢ — 1}, which completes the proof. O

Next, we show that 1-point pseudorandomness-style puncturing secure circuit classes are Progmaskable.

Theorem 8.18. Let iO be a post-quantum iO scheme, and let { := {(\) be a polynomial in the security parameter A.
Then, for any circuit class Circ that satisfies 1-point m-bit (Dyx, Dciyc)-pseudorandomness-style puncturing securi

y p Circ)P tyle p g security
(with respect to Puncture) (see Definition 7.1), then iO(Circ) satisfies {-points ((Dx)!, Dx, D;‘,a'f'm"e“, Dcire)-
Progmaskability security with respect to an efficient algorithm Program, where:

. D;‘,alf'co"ed: half-correct distribution (see Definition 8.5),

e Dcirc outputs C,r where C Dcirc (1Y), and v & {0,1}¥ where w is the length of the randomness required to
run the iO compiler.

« Program is defined as follows: oninput ((C,r), (x1,...,%¢), (y1,...,v¢)), it outputs C. Here, C = iO(1*,C';7)
and C'(x') is defined as follows:
- Ifx' = x; for some i € [{], output y;,

— Else, output Cy,, . x,(x"), where C,

x, < Puncture(C, (x1,...,x/)).

..........

Proof of Theorem 8.18. We describe the hybrids below.

Hj: this corresponds to Dy in Definition 8.4. That is, this hybrid outputs (6, X1,...,%p) < Dy, where x; < Dx for

every i € [¢] and C = iO(C;r), C + Dcire(1*) and 7 & {0,1}* where w is the length of the randomness required
to run the iO compiler, i.e., C + iO(C).

H;: outputs (6, X1,...,%7), where as before, x; < Dx for every i € [¢], but C+ iO(1*,C’;r) where C’ is defined

as follows: Sample C < Dcirc(1") and 7 & {0,1}* where w is the length of the randomness required to run the i©Q
compiler and then C’(x") is defined as follows:

e If x’ = x; for some i € [{], output C(x;),
* Else, output Cy,, x,(x"), where Cy, . x, < Puncture(C, (x1,...,x¢)).

By i0 security of iO, Hy and H; are computationally indistinguishable.

Hj;: Let X be a uniform boolean random variable, i.e., X = 0 with probability % and X = 1 with probability %
Sample X and if X = 0, output (C,x1,...,x;) < Hy. Else, output (C,x1,...,x;) generated as follows: generate

C + i0(1*,C"), where & {0,1}* where w is the length of the randomness required to run the i© compiler and C’

is defined as follows: Sample C ¢ Dcirc(1*) and y; & Y\{C(x1)}, .- y0 & Y \ {C(x/)}, and then C'(x’) is
defined as follows:

e If x' = x; for some i € [{], output y;,

* Else, output Cy,,. x,(x), where Cy,,.. v, < Puncture(C, (x1,...,x¢)).

67

Hj; is a union of two events X = 0 and X = 1. Conditioned on X = 0, Hj is the same as Hq, and conditioned on

X =1, it is the same as H; except that we changed the distribution of y1,y2,..., Y, to ¥ &y \{C(x1)},...,y¢ &
Y \ {C(x/)}. However, the change is indistinguishable by the (Dx, Dcic)-puncturing security of Circ. Hence, by
puncturing security, the outputs of Hy and H, are computationally indistinguishable by Theorem 8.17 since Circ
satisifes 1-point m-bit (Dx, Dcirc)-pseudorandomness style puncturing security with respect to Puncture and iO is a
post-quantum iO.

Note that the only difference between the X = 0 and X = 1 cases in H; is that we changed the programmed value
of C'atxq,.. ., xy. Therefore, Hy can be rewritten as follows.
Hj3: Output (C,xq,...,x;) generated as follows: generate C < i((1%,C’), where C’ is defined as follows: Sample

C < Dcirc(1*) and yy & Y\{C(x1)},.-.,y¢ Sy \ {C(x/)}. Let X be a uniform boolean random variable, i.e.,
X = 0 with probability 1, and X = 1 with probability 3. Sample X and if X = 0, for any input x’, C’ (x') is defined as
follows:

o If x' = x; for some i € [{], output C(x;),

* Else, output Cy,,. x,(x), where Cy,,. v, < Puncture(C, (x1,...,x¢)).
and if X = 1, C'(x') is defined as follows:

o If x' = x; for some i € [{], output y;,

* Else, output Cy,,. x,(x"), where Cy,,. v, < Puncture(C, (x1,...,x¢)).

Clearly, the outputs of H; and Hj are identically distributed. N
Hy: this corresponds to Dy in Definition 8.4 where Dx = Dx. In other words, Hy outputs (C, x1,...,x4) + D;.

The outputs of hybrids Hz and Hy are identically distributed because the distribution of the programmed values at the
points of puncture {xi}ie[é] in Hj is the same as the half-correct distribution (see Definition 8.5).

O
Combining Theorem 8.18 with Theorem 8.11, we get the following corollary.

Corollary 8.19 (Unpredictable copy-protection for pseudorandomness-style puncturable secure circuit class
from UPO). Ler (Circ, Puncture) be a circuit class satisfying 1-point 1-bit (Dx, Dcirc)-pseudorandomness style
puncturing security. Then assuming post quantum iO exists, any UPO scheme UPO = (Obf, Eval) satisfying
(Dx x Dx)-generalized UPO security for Circ with respect to Program .,,.onical a5 well as iO security is also a copy-
protection scheme (CopyProtect, Eval) for Circ with CopyProtect(-) = UPO.0bf? and Eval = UPO.Eval, satisfying
oracular-(Dx X Dx x Dcjrc)-unpredictable-style-CP anti-piracy.

Proof of Corollary 8.19. The correctness of (CopyProtect, Eval), where recall CopyProtect = UPO.06f and Eval =
UPO.Zval, immediately follows from the correctness of UPO.
Next, we prove oracular-(Dx X Dx X Dcjrc)-unpredictable-style CP anti-piracy of (CopyProtect, Eval) for Circ.
Let iO be a post-quantum iO scheme, and consider the circuit class iO(Circ), where each key is viewed as (C, 1)
for some circuit key/description C of a cicruit in Circ and 7 is a string of size that of the randomness needed to run
iO compiler. Let Dc;, be a distribution on Circ and Program be a programming algorithm for iO(Circ), defined as
follows:

. ﬁCirc outputs C, r where C <— DCirc(l)‘), and 7 <& {0,1}" where w is the length of the randomness required to
run the iO compiler.

* Program is defined as follows: on input ((C,7), (x1,...,x¢), (41,...,He)), where py, ..., iy are programming

—_~—

circuits for the punctured points, Program computes y; < p;(x;) for every i € [f], and outputs C +
Program(C, (X1, ey Xg), (yl, . ,yg)).

68

- If x’ = x; for some i € [¢], output y;,
— Else, output C(x').

By Theorem 8.18, we conclude that iO(Circ) with respect to Program is a 2-points 1-bit ((Dx x Dx, Dy, Dh!f-correct, ﬁgrc)-
Progmaskable circuit class where Dg}a'f’corre“ is the half-correct distribution (see Definition 8.5). Therefore, by

Theorem 8.11, we conclude that (CopyProtect, Eval) satisfies 1/2-oracular -(Dx x Dx, Dcir)-unpredictable-style-CP
antipiracy for iO(Circ). However, by the iO-security of UPO, we can move to a hybrid where in the oracular-copy-
protection anti-piracy game, the challenger after sampling (C, 7) ﬁc;rc, instead of running CopyProtect on iO(C;r),
runs CopyProtect on C after sufficient padding to match the circuit size of iO(C; r); the winning condition remains the
same. Clearly, by the 1O security of UPQ, the output of the copy-protection adversary, even in the presence of the correct
output values at the challenge points, must be computationally indistinguishable from that of the real game, and hence
the winning probability of the adversary in this hybrid is at most % up to negligible factors. However, note that the hybrid
game is the same as the oracular-(Dx X Dx X Dciyc)-unpredictability-style-CP anti-piracy game of (CopyProtect, Eval)
for Circ. Hence, (CopyProtect, Eval) satisfies oracular-(Dx X Dx X Dci)-unpredictability-style-CP anti-piracy for
Circ.

O

By combining Corollary 8.19 with Theorems 3.17 and 5.1, we immediately get the following corollary.

Corollary 8.20 (Unpredictable copy-protection for pseudorandomness style puncturable secure circuit class). Ler
(Circ, Puncture) be a circuit class satisfying 1-point 1-bit (Dx, Dcirc)-pseudorandomness style puncturing security
(see Definition 7.1). Then, assuming the existence of polynomially secure iO and the LWE assumption, then there exists
a copy-protection scheme for Circ that satisfies (Dx X Dx X Dcirc)-oracular-unpredictable-style-CP anti-piracy (see
Definition 3.1). Moreover, if Dx = Uniformy, then we can replace the LWE assumption with the existence of OWFs.

9 Summary of Results

To summarize, we get the following feasibility results for various kinds of copy-protection. Let X = {0, 1}”(’\) or in
short X = {0, 1}" be the input space.

1. Corollary 7.7: Assuming the existence of polynomially secure iO and the LWE assumption, for any puncturable
circuit class (Circ, Puncture) satisfying 2-point m-bit (D, Dcirc)-pseudorandomness-style puncturing security
(Definition 7.1), there exists a copy-protection scheme that satisfies (D¢, X Dx X Dx)-oracular-pseudorandomness-
style CP+ anti-piracy (Definition 3.4). Moreover, if Dx = Uniformy, then we can replace the LWE assumption
with the existence of OWFs.

2. Corollary 8.2: Assuming the existence of polynomially secure iO and the LWE assumption, for any puncturable
circuit class (Circ, Puncture) satisfying 2-point m-bit (D, Dciyc)-unpredictability-style puncturing security (see
Definition 7.1), there exists a copy-protection scheme that satisfies (Dci. X Dx X Dx)-unpredictability-style
CP anti-piracy (see Definition 3.1). Moreover, if Dx = Uniformy, then we can replace the LWE assumption with
the existence of OWFs.

3. Corollary 8.15: For k > 2, assuming the existence of polynomially secure iO and the OWFs, there exists a
copy-protection scheme for Circk, a circuit implementation of set of all k-point functionalities, that satisfies

oracular-Digaéffk -unpredictable-style anti-piracy (see Definition 3.1), where Di;’”éf:’cek is defined as: S, x1, xp

Dig“gi’f(ﬂ), where S ¢ (%) and x1, x7 Digﬂs{ve(S), where each S € (%) is an index for a circuit in CircF,

and Df(gﬂsive is as defined in Definition 8.7.

4. Corollary 8.20: Assuming the existence of polynomially secure iO and the LWE assumption, then for any circuit
class (Circ, Puncture) satisfying 1-point 1-bit (D, Dcjrc)-pseudorandomness style puncturing security (see
Definition 7.1), there exists a copy-protection scheme that satisfies (Dx x Dx X Dcirc)-oracular-unpredictable-
style-CP anti-piracy (see Definition 3.1). Moreover, if Dx = Uniformy, then we can replace the LWE assumption
with the existence of OWFs.

69

Acknowledgments

Prabhanjan Ananth is supported by the National Science Foundation under the grants FET-2329938, CAREER-2341004
and, FET-2530160. Amit Behera was partially funded by the Israel Science Foundation (grant No. 2527/24) and the
European Union (ERC-2022-COG, ACQUA, 101087742). Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority can be held responsible for them.

References

[Aar09a]

[Aar09b]

[AB24]

[ABH25]

[AC02]

[AK22]

[AKL"22]

[AKL23]

[AKY25]

[ALL"21a]

[ALL"21b]

[AP20]

Scott Aaronson. Quantum copy-protection and quantum money. In Proceedings of the 24th Annual IEEE
Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 229-242.
IEEE Computer Society, 2009. (Cited on page 3.)

Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual IEEE Conference
on Computational Complexity, pages 229-242. IEEE, 2009. (Cited on page 5.)

Prabhanjan Ananth and Amit Behera. A modular approach to unclonable cryptography. In Leonid Reyzin
and Douglas Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS, pages 3-37. Springer,
Cham, August 2024. (Cited on page 3,4, 5, 6, 11, 12, 13, 22, 23, 24,42, 43, 52.)

Prabhanjan Ananth, Amit Behera, and Zikuan Huang. Copy-protection from UPO, revisited. Cryptology
ePrint Archive, Paper 2025/1207, 2025. (Cited on page 1.)

Mark Adcock and Richard Cleve. A quantum goldreich-levin theorem with cryptographic applications. In
Helmut Alt and Afonso Ferreira, editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects
of Computer Science, Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings, volume 2285 of
Lecture Notes in Computer Science, pages 323-334. Springer, 2002. (Cited on page 16.)

Prabhanjan Ananth and Fatih Kaleoglu. A note on copy-protection from random oracles. arXiv preprint
arXiv:2208.12884, 2022. (Cited on page 3.)

Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry. On the feasibility of
unclonable encryption, and more. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 212-241. Springer, Cham, August 2022. (Cited on page 3, 5, 7, 26.)

Prabhanjan Ananth, Fatih Kaleoglu, and Qipeng Liu. Cloning games: A general framework for unclonable
primitives. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085
of LNCS, pages 66-98. Springer, Cham, August 2023. (Cited on page 3, 5, 16.)

Prabhanjan Ananth, Fatih Kaleoglu, and Henry Yuen. Simultaneous haar indistinguishability with
applications to unclonable cryptography. In ITCS 2025, 2025. (Cited on page 16, 17.)

Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches for quantum
copy-protection. In Annual International Cryptology Conference, pages 526-555. Springer, 2021. (Cited
on page 3.)

Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches for quantum
copy-protection. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS,
pages 526555, Virtual Event, August 2021. Springer, Cham. (Cited on page 3, 7.)

Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: Attacks and fixes
for noisy linear FE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 110-140. Springer, Cham, May 2020. (Cited on page 15.)

70

[AP21]

[BBBV97a]

[BBBV97b]

[BBV24]

[BCP14]

[BDGM20]

[BDGM22]

[BDJT24]

[BGI12]

[BGI14]

[BGKT24]

[BGMZ18]

[BPW16]

[BW13]

Prabhanjan Ananth and Rolando L La Placa. Secure software leasing. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 501-530. Springer, 2021. (Cited on

page 3.)

Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of
quantum computing. STAM journal on Computing, 26(5):1510-1523, 1997. (Cited on page 14.)

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths and weaknesses
of quantum computing. SIAM J. Comput., 26(5):1510-1523, 1997. (Cited on page 12, 13.)

James Bartusek, Zvika Brakerski, and Vinod Vaikuntanathan. Quantum state obfuscation from classical
oracles. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages 1009-1017,
2024. (Cited on page 4.)

Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 52—73. Springer, Berlin, Heidelberg, February 2014. (Cited on
page 26, 56.)

Zvika Brakerski, Nico Déttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homomorphic
encryption schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 79—-109. Springer, Cham, May 2020. (Cited on page 15.)

Zvika Brakerski, Nico Déttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings are not
necessary for IO: Circular-secure LWE suffices. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruft, editors, ICALP 2022, volume 229 of LIPIcs, pages 28:1-28:20. Schloss Dagstuhl, July 2022.
(Cited on page 15.)

Pedro Branco, Nico Doéttling, Abhishek Jain, Giulio Malavolta, Surya Mathialagan, Spencer Peters, and
Vinod Vaikuntanathan. Pseudorandom obfuscation and applications. Cryptology ePrint Archive, Paper
2024/1742, 2024. (Cited on page 15.)

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6:1-6:48, 2012.
(Cited on page 15.)

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501-519. Springer, Berlin, Heidelberg,
March 2014. (Cited on page 16.)

James Bartusek, Vipul Goyal, Dakshita Khurana, Giulio Malavolta, Justin Raizes, and Bhaskar Roberts.
Software with certified deletion. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 85—111. Springer, 2024. (Cited on page 3.)

James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: Provable security against
zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of
LNCS, pages 544-574. Springer, Cham, November 2018. (Cited on page 15.)

Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos - trapdoor permutations
from indistinguishability obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 474-502. Springer, Berlin, Heidelberg, January 2016. (Cited on page 16, 31,
39, 55.)

Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue Sako
and Palash Sarkar, editors, ASTACRYPT 2013, Part II, volume 8270 of LNCS, pages 280-300. Springer,
Berlin, Heidelberg, December 2013. (Cited on page 4, 16.)

71

[CG24a]

[CG24b]

[CG25a]

[CG25b]

[CHV23]

[CHVW19]

[CLLZ21]

[CLW25]

[CMP20a]

[CMP20b]

[CV22]

[DQV*21]

[GGMS6]

[GL8I]

[GP21]

[HIL25]

Alper Cakan and Vipul Goyal. Unclonable cryptography with unbounded collusions and impossibility of
hyperefficient shadow tomography. In TCC, 2024. (Cited on page 3.)

Andrea Coladangelo and Sam Gunn. How to use quantum indistinguishability obfuscation. In Bojan
Mohar, Igor Shinkar, and Ryan O’Donnell, editors, S6th ACM STOC, pages 1003—1008. ACM Press, June
2024. (Cited on page 3, 4, 42, 43.)

Alper Cakan and Vipul Goyal. How to copy-protect all puncturable functionalities without conjectures: A
unified solution to quantum protection. Cryptology ePrint Archive, Paper 2025/1197, 2025. (Cited on
page 14.)

Alper Cakan and Vipul Goyal. How to copy-protect malleable-puncturable cryptographic functionalities
under arbitrary challenge distributions. Cryptology ePrint Archive, Paper 2025/1357, 2025. (Cited on
page 14.)

Céline Chevalier, Paul Hermouet, and Quoc-Huy Vu. Semi-quantum copy-protection and more. Cryptology
ePrint Archive, Report 2023/244, 2023. (Cited on page 3, 5.)

Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Matrix PRFs: Constructions, attacks,
and applications to obfuscation. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 55-80. Springer, Cham, December 2019. (Cited on page 15.)

Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and applications to
unclonable cryptography. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825
of LNCS, pages 556584, Virtual Event, August 2021. Springer, Cham. (Cited on page 3, 4, 7, 16, 19, 26,
27,28, 30, 42.)

Valerio Cini, Russell W. F. Lai, and Ivy K. Y. Woo. Lattice-based obfuscation from NTRU and equivocal
LWE. Cryptology ePrint Archive, Paper 2025/1129, 2025. (Cited on page 15.)

Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model. arXiv (CoRR), abs/2009.13865, 2020.
(Cited on page 3, 5.)

Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model. arXiv preprint arXiv:2009.13865, 2020.
(Cited on page 3.)

Eric Culf and Thomas Vidick. A monogamy-of-entanglement game for subspace coset states. Quantum,
6:791, sep 2022. (Cited on page 7, 27, 28.)

Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Succinct LWE
sampling, random polynomials, and obfuscation. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part I, volume 13043 of LNCS, pages 256-287. Springer, Cham, November 2021. (Cited on page 15.)

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the
ACM, 33(4):792-807, 1986. (Cited on page 16.)

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st ACM
STOC, pages 25-32. ACM Press, May 1989. (Cited on page 74.)

Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Samir Khuller
and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages 736-749. ACM Press, June 2021.
(Cited on page 15.)

Yao-Ching Hsieh, Aayush Jain, and Huijia Lin. Lattice-based post-quantum iO from circular security with
random opening assumption (part II: zeroizing attacks against private-coin evasive LWE assumptions).
Cryptology ePrint Archive, Paper 2025/390, 2025. (Cited on page 15.)

72

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 669-684. ACM Press, November 2013. (Cited on page 16.)

[KY25a] Fuyuki Kitagawa and Takashi Yamakawa. Copy protecting cryptographic functionalities over entropic
inputs. Cryptology ePrint Archive, Paper 2025/1264, 2025. (Cited on page 1.)

[KY25b] Fuyuki Kitagawa and Takashi Yamakawa. Foundations of single-decryptor encryption. Cryptology ePrint
Archive, Paper 2025/1219, 2025. (Cited on page 5, 7, 9, 10, 17, 19, 20, 23, 24, 27, 42.)

[LLQZ22] Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry. Collusion resistant copy-protection for
watermarkable functionalities. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume
13747 of LNCS, pages 294-323. Springer, Cham, November 2022. (Cited on page 3.)

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM Journal on
Computing, 40(6):1803-1844, 2011. (Cited on page 16.)

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne Canteaut
and Francois-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages
127-156. Springer, Cham, October 2021. (Cited on page 15.)

[Zhal9] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 408—438. Springer, Cham, May
2019. (Cited on page 30, 31.)

A Proof of Theorem 6.2

Here, we prove Theorem 6.2.

Proof of Theorem 6.2. 1t suffices to construct a scheme for single-bit messages since we can expand the message space
by a simple bit-by-bit encryption (under independent keys for each bit). Let FGen be a generation algorithm for a keyed
injective one-way function. Then we construct a key-robust non-committing encryption scheme with the message space
{0,1} and key space {0, 1}% as follows.

Gen(11): On input 14, generate F < FGen(1*) and x + {0, 1}, and output k := (F, x).

Enc(k,m): On input (F,x) and m € {0,1}, sample x" + {0,1}% and ro, 71 ¢ {0,1} e, sets

cty, = (F(x),rm, <7’mr x>)

and
Clne1 = (F(x/)/ "ma1, <rm®1/ x/> ©® 1),

and output ct := (F, ctg, cty).

Dec(k,ct): On input k and ct = (F, cty, cty), if the first component of k disagrees with F, output L. Otherwise,
parse k = (F,x) and ct, = (yp, 7p, Bp) for b € {0,1}. If there is unique b € {0,1} such that y, = F(x) and
By = (rp, x), then output b, and output L otherwise.

Fake(1"): On input 1%, generate F < FGen(1%), sample xq, x; ¢ {0,1}%" and rg, ry < {0, 1}, sets
ety = (F(xp), 76, (ro, X))
for b € {0,1}, and output ct* := (F, ct, ct}) and st := (F, xg, x1).

Open(st,m): Oninputstand m € {0,1}, parse st = (F, xo, x1) and output k* := (F, x,).

73

Correctness and key-robustness are clear from the injectivity of FGen. Below, we show the non-committing property.
Fix m € {0, 1} and consider the following hybrids of distributions.

Dg: This corresponds to the distribution in the LHS of the non-committing property. That is, it samples as follows:
Generate F < FGen(1%), sample x, x’ < {0,1}%e, and ro, 71 < {0, 1} e, set ctyy, == (F(x), 7, (rm, x)) and
ctmar = (F(¥'), rme1, (rme1, ') @ 1), and output (ct = (F, cto, ct1), k = (F, x)).

Dy: This is identical to Dy except that ct,,; 41 is generated as ctyye1 == (F(X'), w1, (Fme1, 7)), By the one-wayness
of FGen and the Goldreich-Levin theorem [GL89], D ~ D».

D»: This corresponds to the distribution in the LHS of the non-committing property. That is, it samples as follows:
Generate F < FGen(11), sample xo, x1 {0,1}e, and rq, r; < {0,1}%m, set cty == (F(xp), 73, (75, Xp))
for b € {0,1}, and output (ct = (cto, ct1), k = (F, xp)).

It is easy to verify that D and D, are identical: D1 = D,.

C
Combining above, Dy ~ D,, and thus the non-committing property is proven. O

74

	Introduction
	Our Results in a Nutshell
	Technical Overview

	Preliminaries
	Quantum Query Lower Bound
	Min-Entropy, Universal Hash Functions, and Leftover Hash Lemma
	Classical Cryptographic Primitives
	Quantum Goldreich-Levin
	Useful Lemma

	Definitions
	Definition of Copy-Protection
	Definitions of Unclonable Puncturable Obfuscation

	Strong Monogamy Property of Coset States with Auxiliary Inputs
	Proof of Theorem 16

	Construction of UPO
	Construction
	Proof of Security

	Alternative Proof of Security for Uniform Inputs
	Oracular Pseudorandomness-Style Copy-Protection
	Puncturable Secure Circuits
	Oracular Pseudorandomness-Style Copy-Protection for Pseudorandomness-Style Puncturable-Secure Circuits

	Oracular Unpredictability-Style Copy-Protection
	Progmaskable circuit classes
	Oracular Unpredictability-Style Copy-Protection for Progmaskable Circuits
	Relation between Progmaskable and Puncturable Circuits

	Summary of Results
	Proof of Theorem 18

