
On The Reprogrammability of Quantum Random

Oracle: Impossibility Results on Post-Quantum

Zero-knowledge

Instructed by Prabhanjan Ananth

Zikuan Huang

October 29, 2024

Contents

1 Introduction and Importance 2

2 Problems 2

3 Literature Review 2
3.1 Security of Fiat-Shamir Transformation under the Random Oracle Model (ROM) . . 3
3.2 Post-Quantum Security of Fiat-Shamir Transformation under the Quantum Random

Oracle Model (QROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Useful Tool: Compress Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Impossibility of Public-Coin Unbounded-Parallel Black-Box Zero-Knowledge Proofs/Arguments 4

4 Preliminaries 5
4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Distribution and Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Quantum Random Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 Zero-knowledge Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Impossibility on Public-coin Unbounded-parallel Zero-knowledge Proofs 7

6 Why it is Hard to Prove Impossibilities on Public-coin Unbounded-Parallel Zero-
knowledge Arguments 13

7 Other Results: Impossibility on Straight Line Simulator 14

8 Other Results: Impossibility on FLS-type Public-coin Unbounded-Parallel Zero-
knowledge Arguments 18

1



1 Introduction and Importance

The classical random oracle model, introduced by [BR93], has proven to be a powerful framework
for establishing the security of various cryptographic schemes when direct security proofs in the
plain model are not feasible. However, with the advent of quantum computing, there has been a
growing focus on ’post-quantum’ security, which addresses the robustness of cryptographic schemes
against quantum adversaries.

To address post-quantum security, [BDF+11] developed a model to incorporate the effects of
quantum computations into the random oracle framework. In this quantum random oracle model,
a quantum adversary can query the random oracle in a superposition of states. Specifically, for a
random oracle O, a quantum adversary can make a query of the form:

|x⟩ |y⟩ → |x⟩ |y ⊕O(x)⟩ ,

where the adversary’s query state is transformed into a superposition that includes the output of
the random oracle.

This raises an important question: To what extent can a classical reduction under the random
oracle model be extended to a post-quantum reduction? This question is crucial, given recent
results such as [YZ22], which suggest that quantum algorithms can be significantly more powerful
than classical algorithms within the random oracle model. Understanding the limitations and
capabilities of extending classical reductions to the quantum setting is essential for ensuring the
security of cryptographic schemes in a post-quantum world.

2 Problems

In this work, we focus on a specific type of reduction. In the classical setting, if an algorithm A
can solve problem A within the random oracle model, then it is possible to construct an algorithm
B that solves problem B in the plain model. The algorithm B operates as follows: it runs A and
simulates the random oracle O internally during the execution of A.

More precisely, B is designed to emulate the behavior of the random oracle O in a manner that
allows A to solve problem A. Through this simulation, B can leverage the solution provided by A
to address problem B directly in the plain model.

3 Literature Review

In classical cryptography, proving the security of a scheme S under the random oracle model often
involves demonstrating that any adversary A that breaks S in this model can be converted into an
adversary B that breaks an underlying assumption T in the plain model. Typically, the reduction
involves the following steps:

• B runs A with the appropriate parameters.

• B records some of A’s queries to the random oracle using a specific strategy (e.g., recording
all queries or selecting some at random) and responds with simulated answers as if it were
the random oracle.

• Using the recorded queries and A’s behavior, B then attempts to break the assumption T.
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3.1 Security of Fiat-Shamir Transformation under the Random Oracle Model
(ROM)

One well-known example of such a reduction is the security of the Fiat-Shamir transformation
under the random oracle model. Consider an adversary A that forges a tuple (α, β, γ) such that:

• O(α) = β, where O is the random oracle used as the hash function in the Fiat-Shamir
transformation.

• The verifier accepts the tuple (α, β, γ).

The reduction works as follows, assuming A does not query the same α more than once:

• Suppose A makes p(λ) queries to the random oracle, where p(·) is a fixed polynomial. Then
B samples a random index i← [p(λ)] and maintains a simulated random oracle O.

• For the first i − 1 queries, B responds to A using O. The i-th query αi is forwarded to an
external verifier.

• Upon receiving a response β from the external verifier, B updates the simulated oracle O to
ensure O(α) = β and uses this updated oracle for subsequent queries.

Intuitively, A cannot distinguish whether the response from the random oracle is randomly
sampled or provided by the external verifier, since the verifier uses a public-coin protocol.

3.2 Post-Quantum Security of Fiat-Shamir Transformation under the Quantum
Random Oracle Model (QROM)

In recent work [DFMS19], the author investigates the security of the Fiat-Shamir transformation
when the adversary A is a quantum adversary with quantum access to the random oracle O. In
this model, the adversary can perform superposition queries of the form:

|x⟩ |y⟩ → |x⟩ |y ⊕O(x)⟩ .

A key challenge here is that recording queries made by the quantum adversary is difficult, as
any measurement of the query register could disrupt the adversary’s state. However, since the
adversary ultimately outputs a classical tuple (α, β, γ), it may be possible to measure some queries
without significantly affecting the adversary’s output. In fact, [DFMS19] provides a theorem stating
(informally) that:

• Let pOA be the success probability of the original adversary A with respect to a random oracle
O.

• After measurement and reprogramming, let (α∗, β∗) be the recorded query and response from
the external verifier. Let pOA,rep be the probability that A outputs an accepted transcript

(α, β, γ) with α = α∗ and β = β∗. Then, pOA,rep ≥
1

polyp
O∗
A , where O∗ is the modified oracle

such that O∗(α) = β.

This result relies on extracting only one query-response pair. Later work [DFM20] extends this
approach to extracting a constant number of query-response pairs, but the multiplicative factor on
the success probability becomes 1

polyk
, where k is the number of pairs. Additionally, [CCLY21] used

a variant of this lemma to demonstrate the impossibility of post-quantum constant-round black-box
zero-knowledge arguments.
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3.3 Useful Tool: Compress Oracle

Another significant approach is introduced by [Zha18], which presents the Compress Oracle tech-
nique. This method offers a novel perspective on the problem. Specifically, a phase oracle can
be as powerful as a standard oracle for any problem under a quantum oracle model. A quantum
algorithm A with a standard oracle:

|x⟩ |y⟩ → |x⟩ |y ⊕O(x)⟩

can be transformed into another algorithm B with a phase oracle:

|x⟩ |y⟩ → (−1)⟨O(x),y⟩ |x⟩ |y⟩ .

Zhandry observed that the phase factor (−1)⟨O(x),y⟩ can be interpreted both as the effect of the
oracle query on the adversary’s state and as the adversary’s effect on the oracle. Therefore, if we
consider the adversary’s queries as impacting the oracle’s database, it may be possible to record
some of the queries. However, measuring the oracle database during the algorithm might disrupt
the entanglement between the adversary and the oracle. [LZ19] used this technique to prove the
security of the Fiat-Shamir transformation under the Quantum Random Oracle Model.

3.4 Impossibility of Public-Coin Unbounded-Parallel Black-Box Zero-Knowledge
Proofs/Arguments

When a reduction requires extracting a polynomial number of query-response pairs, the techniques
mentioned above (and all known techniques) are insufficient. A classic example is the impossi-
bility of public-coin unbounded-parallel black-box zero-knowledge arguments, as demonstrated by
[PTW11]. The classical reduction approach involves:

• Constructing a malicious verifier V ∗ for t sessions, where V ∗ outputs O(m), with m being
the messages exchanged in all prover sessions, and O is the random oracle.

• Assuming the existence of a simulator S that interacts with V ∗ in a black-box manner, the
goal is to convert S into a malicious prover P ∗.

• The malicious prover P ∗ first samples a random index i ← [t] and embeds the real-time
interaction into the i-th session.

A key question is whether post-quantum public-coin unbounded-parallel black-box zero-knowledge
proofs/arguments are still impossible. We aim to achieve at least one of the following results:

• A statement on whether it is possible to construct post-quantum public-coin unbounded-
parallel black-box zero-knowledge proofs/arguments (likely to be impossible).

• A counterexample showing that this type of proof does not work, not necessarily by construct-
ing post-quantum proofs/arguments but perhaps by demonstrating some trivial protocols
where a simulator cannot be converted into a malicious prover.
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4 Preliminaries

4.1 Notations

For most of the time, we use A,B, · · · to denote sets and distributions. We use A,B, · · · to denote
algorithms and oracles.

4.2 Distribution and Entropy

Let X,Y be sets, then FuncX→Y denotes the set of all functions mapping from X to Y . Let D be
a distribution over X.

Definition 4.1 (Entropy). Let D be an arbitrary distribution over set X, the entropy of D is

H(D) = −
∑
x∈X

D(x) log2D(x).

Definition 4.2 (Top Sum and Top Weight Supports). Let D be an arbitrary distribution over set
X, define TSt(D) be the sum of weights on the largest t supports

TSt(D) =
∑

x∈TWSt(D)

D(x)

where TWSt(D) ⊆ X is an subset of size t such that ∀x ∈ X −TWSt(D),TWSt(D) ∈ TWSt(D) we
have D(x) ≤ D(TWSt(D)).

Lemma 4.3. Let D be an arbitrary distribution over X that satisfies TSt(D) ≤ a, then the entropy
of distribution D, H(D) ≥ (1− a) (log t− log a).

Proof. Let TWSt(D) be the set defined above. For any x ∈ X − TWSt(D), D(x) ≤ a
t thus

H(D) ≥ (1− a) (log t− log a) .

Proof of convexity is omitted.

Lemma 4.4 (Shearer’s inequality). Let D be a distribution over sets X1 ×X2 × · ×Xn, let Di be
the marginal distribution of D over Xi. Then

H(D) ≤
n∑
i=1

H(Di).

Lemma 4.5 (Pinsker’s inequality). Let P,Q be two distribution over set X, we have

∥P −Q∥1 ≤
√
2DKL(P,Q)

where DKL is the Kullback–Leibler divergence. When Q is the uniform distribution over X, it
becomes

∥P −Q∥1 ≤
√

2 (log |X| −H(P )).
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4.3 Quantum Random Oracles

Lemma 4.6 ([Zha12a], Corollary 7.5). Let X,Y, T be three sets. Let A be any quantum algorithm
that makes q queries to an oracle O : X → Y . We have∣∣∣∣∣ Pr

O $←− FuncX→Y

[
AO(·) = 1

]
− Pr
O $←− FuncT→Y ◦FuncX→T

[
AO(·) = 1

]∣∣∣∣∣ ≤ O(q3/ |T |).

Lemma 4.7 ([Zha12b]). Let X,Y be two sets. Let A be any quantum algorithm that makes q
queries to an oracle O : X → Y . Let Func2qX→Y be a distribution over FuncX→Y such that it is
2q-wise independent. We have

Pr
O $←− FuncX→Y

[
AO(·) = 1

]
= Pr
O←Func2qX→Y

[
AO(·) = 1

]
.

4.4 Zero-knowledge Protocols

Definition 4.8 (Proof/Argument System). A protocol Π = (P, V ) is a post-quantum proof/argument
for language L ∈ NP if it satisfies:

• Completeness: For all x ∈ L there exists w such that

Pr [⟨P (x,w), V (x)⟩ = 1] = 1.

• Soundness: For all x /∈ L, all possibly unbounded/QPT prover P ∗ and all non-uniform
advice |ψx⟩,

Pr [OutputV ⟨P ∗(x, |ψx⟩), V (x)⟩ = 1] < negl.

Definition 4.9 (Zero-knowledge). A post-quantum proof/argument for language L ∈ NP is

• Black-box Zero-knowledge: if there exists a black-box expected polynomial time quantum
simulator S such that for all non-uniform QPT verifier V ∗(|ψ⟩),

ViewV ⟨P (x), V ∗(x, |ψ⟩)⟩ ≈c SV
∗(|ψ⟩).

• Black-box Weak Zero-knowledge: if there exists a black-box BQP simulator S such that
for all non-uniform QPT verifier V ∗, all distinguisher D and all 0 < ϵ < 1,∣∣∣Pr [D (ViewV ⟨P (x), V ∗(x, |ψ⟩)⟩) = 1]− Pr

[
D
(
SV ∗(|ψ⟩)(x, 11/ϵ)

)
= 1

]∣∣∣ ≤ ϵ.
• ϵ-Zero-knowledge: if there exists a black-box BQP simulator S such that for all non-uniform
QPT verifier V ∗, all distinguisher D,∣∣∣Pr [D (ViewV ⟨P (x), V ∗(x, |ψ⟩)⟩) = 1]− Pr

[
D
(
SV ∗(|ψ⟩)(x)

)
= 1

]∣∣∣ ≤ ϵ.
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5 Impossibility on Public-coin Unbounded-parallel Zero-knowledge
Proofs

To prove the impossibility of public-coin unbounded-parallel zero-knowledge proofs, consider a
simulator S that produces a transcript indistinguishable from a real transcript. The central idea of
our proof is that, if the number of sessions is sufficiently large, there must exist at least one session
where the distribution of the verifier’s messages output by the simulator has nearly maximum
entropy. In this session, we can construct a malicious prover that uses the transcript to convince
the verifier of any x /∈ L.

To establish this, we need to demonstrate that the total entropy of the verifier’s messages is
large [claim 5.5]. This involves invoking Zhandry’s lemma on quantum random oracles to argue
that the entropy is sufficiently high.

Lemma 5.1. Let FuncX→Y be the set of functions mapping set X to set Y . Let Sx ⊆ Y be a subset
of Y such that |Sx| = s ≪ |Y | for all x ∈ X. We abuse the notation and let FuncX→Y−Sx be the
set of functions f mapping X to Y such that f(x) /∈ Sx for all x ∈ X. For any quantum algorithm
A (possibly inefficient) that makes q ≪ s queries to an oracle O, we have∣∣∣∣∣ Pr

O $←− FuncX→Y

[
AO(·) = 1

]
− Pr
O $←− FuncX→Y−Sx

[
AO(·) = 1

]∣∣∣∣∣ ≤ O(
√
q3s/ |Y |).

Proof. Let S be an arbitrary subset of Y with size s. Suppose there exists quantum algorithm A
such that ∣∣∣∣∣ Pr

O $←− FuncX→Y

[
AO(·) = 1

]
− Pr
O $←− FuncX→Y−Sx

[
AO(·) = 1

]∣∣∣∣∣ > O(
√
q3s/ |Y |).

Then there exists an quantum algorithm B that makes 2q queries to O such that∣∣∣∣∣ Pr
O $←− FuncX→Y

[
BO(·) = 1

]
− Pr
O $←− FuncX→Y−S

[
BO(·) = 1

]∣∣∣∣∣ > O(
√
q3s/ |Y |).

B works as follows. Let gx : Y −Sx → Y −S be a possibly inefficient one-to-one mapping. Whenever
A calls the oracle ∑

x∈X
αx |x⟩ |y⟩ →

∑
x∈X

αx |x⟩ |O(x)⊕ y⟩ .

B does the following:

1. Queries the oracle in a temporary empty register∑
x∈X

αx |x⟩ |y⟩ →
∑
x∈X

αx |x⟩ |y⟩ |O(x)⟩ .

2. Maps the response to Y − S∑
x∈X

αx |x⟩ |y⟩ |O(x)⟩ →
∑
x∈X

αx |x⟩ |y⟩ |gx(O(x))⟩ .
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3. Updates the answer register∑
x∈X

αx |x⟩ |y⟩ |O(x)⟩ →
∑
x∈X

αx |x⟩ |y ⊕ gx(O(x))⟩ |gx(O(x))⟩ .

4. Queries the oracle again and uncompute the temporary register, then trace out the temporary
register ∑

x∈X
αx |x⟩ |y ⊕ gx(O(x))⟩ |gx(O(x))⟩ →

∑
x∈X

αx |x⟩ |y ⊕ gx(O(x))⟩ .

So we only need to prove that∣∣∣∣∣ Pr
O $←− FuncX→Y

[
BO(·) = 1

]
− Pr
O $←− FuncX→Y−S

[
BO(·) = 1

]∣∣∣∣∣ ≤ O(
√
q3s/ |Y |).

Let T be a set of size t, by lemma 4.6,∣∣∣∣∣ Pr
O $←− FuncX→Y

[
BO(·) = 1

]
− Pr
O $←− FuncT→Y ◦FuncX→T

[
BO(·) = 1

]∣∣∣∣∣ ≤ O(q3/t).

∣∣∣∣∣ Pr
O $←− FuncX→Y−S

[
BO(·) = 1

]
− Pr
O $←− FuncT→Y−S◦FuncX→T

[
BO(·) = 1

]∣∣∣∣∣ ≤ O(q3/t).

Note that the probability that a random function O $←−FuncT→Y is in FuncT→Y−S is
(
1− s

|Y |

)t
=

1−O(st/ |Y |). Thus∣∣∣∣∣ Pr
O $←− FuncT→Y ◦FuncX→T

[
BO(·) = 1

]
− Pr
O $←− FuncT→Y−S◦FuncX→T

[
BO(·) = 1

]∣∣∣∣∣ ≤ O(st/ |Y |).

Let t = O(
√
q3 |Y | /s), combine above inequalities we get∣∣∣∣∣ Pr
O $←− FuncX→Y

[
BO(·) = 1

]
− Pr
O $←− FuncX→Y−S

[
BO(·) = 1

]∣∣∣∣∣ ≤ O(
√
q3s/ |Y |).

Theorem 5.2. Let (P,V) be a post-quantum black-box ϵ zero-knowledge proof for any NP language
L where all messages are m(λ) bits long and contains ℓ(λ) rounds, if it satisfies:

• It is a public-coin protocol.

• It remains black-box ϵ-zero-knowledge under k-parallel repetition when k ≥ λ2ℓ5 and ϵ ≤ 1
mk .

Then L is in BQP.
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Proof. Fix any instance x. Let the message space be M = {0, 1}mk, the number of rounds be
ℓ = ℓ(λ). Define M≤i = ∪ii=1M

i. Let S be the black-box simulator and let the number of
queries made by the simulator be q = q(k, λ). Let U be the uniform random distribution over
FuncM≤ℓ→M . Consider a k-parallel malicious verifier VO which has quantum access to a random
oracle O : M≤ℓ → M sampled from U . VO on prover’s message m′ ∈ M≤ℓ responses O(m′). Let
VU denote the verifier that samples an oracle O according to U and runs VO.
Let DV denote the distribution of the output of SV(x). Some notations are defined below

• Let DV(L) where L is a list of message indices be the marginal distribution on those indices.
For example, DV(r1, r2) is the marginal distribution of (r1, r2) and DV(m1, · · · ,mi) is the
marginal distribution of (m1, · · · ,mi).

• For a predicate E, let DV(·|E) be the distribution of the output of SV(x) condition on the
outputted transcript satisfies E. For example, for fixed m∗i , r

∗
j ∈ M , DV(·|mi = m∗i , rj = r∗j )

is the distribution of the output of SV(x) condition on the i-th prover’s message being m∗i
and the j-th verifier’s message being r∗j . Combine this with the first bullet, we use DV(L|E)
to denote the marginal distribution on L condition on E. For example, for fixed m∗1, we use
DV(r1|m1 = m∗1) to denote the marginal distribution of r1 condition on the first prover’s
message being m∗1.

• For two predicates E and F, let dV(E|F) be the probability that SV(x) outputs a transcript
that satisfies E condition on that transcript satisfies F. For example, for fixed m∗1, r

∗
1, we

use dV(r1 = r∗1|m1 = m∗1) to denote the probability that a transcript with the prover’s first
message being m∗1 has response r∗1 from the verifier.

For all oracle distribution U∗, let pU
∗

Invalid be the probability that SVO
outputs a transcript that

contradicts the oracle O when O is sampled according U∗. That is,

pU
∗

Invalid = Pr
[
∃i ∈ [ℓ] s.t. O(m1, · · · ,mi) ̸= ri

∣∣∣(m1, r1, · · · ,mℓ, rℓ)← SV
U∗

(x)
]
.

Claim 5.3. The probability that SVU outputs a transcript that contradicts its oracle is small. That
is, pUInvalid ≤ ϵ.

Proof. If not, a trivial distinguisher that checks whether the outputting transcript is valid will
distinguish the output of the simulator and the actual view of the verifier.

Claim 5.4. The sum of top t = 2mk−log
2 q weights of the distribution of ri condition on the prover’s

previous message being (m∗1, · · · ,m∗i ) is small on average over all (m∗1, · · · ,m∗i ) ∈ M≤i. More
specifically, for all i ∈ [ℓ],∑

(m∗
1,··· ,m∗

i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
TSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))
≤ O

(√
q3/qlog q

)
+ pUInvalid.

Proof. The idea behind the proof is that if the distribution DV
U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

)
has too much weight

on a small fraction of supports then after we modify the random oracle such that the oracle never
answer those supports, either the output distribution of S or pInvalid has to change dramatically.
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But according to lemma 5.1, both quantities can only change slightly.
Now we formally prove this claim using lemma 5.1. For fixed i ∈ [ℓ] and (m∗1, · · · ,m∗i ) ∈ M i, let

S(m∗
1,··· ,m∗

i )
= TWSt

(
DV

U
(ri|m1 = m∗1, · · · ,m∗i )

)
⊂ M be set of supports that has the t largest

weight. Let U ′i be the uniform distribution over FuncM≤ℓ→M−S(m1,··· ,mi)
. Consider the output

distribution of SVU
′
(x). By lemma 5.1, we have∥∥∥∥DVU −DVU′

i

∥∥∥∥
1

≤ O(
√
q3t/ |M |) = O

(√
q3/qlog q

)
(1)

and ∣∣∣pUInvalid − pU ′
i

Invalid

∣∣∣ ≤ O(√
q3/qlog q

)
. (2)

Note that only the image for i-round messages are punctured, but the lemma still holds since
we can view a single random oracle as ℓ oracles, one for each round. For any outputted tran-

script (m∗1, r
∗
1, · · · ,m∗ℓ , r∗ℓ ) of SV

O
(x) where O ← U ′i if r

∗
i ∈ TWSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))
then by the

definition of U ′i this transcript contradicts the oracle O. By the definition of p
U ′
i

Invalid,∑
(m∗

1,··· ,m∗
i )∈M i

dV
U′
i

(
m1=m∗

1···
mi=m

∗
i

)
Pr

[
r∗i ∈ TWSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))∣∣∣∣(m∗1, r∗1, · · · ,m∗ℓ , r∗ℓ )← SVU′
i (x)

]
≤ pU

′
i

Invalid.

By eq. (1), eq. (2) and section 5, we have∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
TSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))

=
∑

(m∗
1,··· ,m∗

i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
Pr

[
r∗i ∈ TWSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))∣∣∣∣(m∗1, r∗1, · · · ,m∗ℓ , r∗ℓ )← SVU (x)]

≤
∑

(m∗
1,··· ,m∗

i )∈M i

dV
U′
i

(
m1=m∗

1···
mi=m

∗
i

)
Pr

[
r∗i ∈ TWSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))∣∣∣∣(m∗1, r∗1, · · · ,m∗ℓ , r∗ℓ )← SVU (x)]

+O

(√
q3/qlog q

)
≤

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U′
i

(
m1=m∗

1···
mi=m

∗
i

)
Pr

[
r∗i ∈ TWSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))∣∣∣∣(m∗1, r∗1, · · · ,m∗ℓ , r∗ℓ )← SVU′
i (x)

]

+O

(√
q3/qlog q

)
≤O

(√
q3/qlog q

)
+ p

U ′
i

Invalid ≤ O
(√

q3/qlog q
)
+ pUInvalid.

Claim 5.5. The entropy on the verifier’s response in DV
U
is large. More specifically, for all i ∈ [ℓ],∑

(m∗
1,··· ,m∗

i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
H

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))
≥

(
1−O

(√
q3/qlog q

)
− pUInvalid

)
(mk−log2 q).

10



Proof. For fixed i ∈ [ℓ] and (m∗1, · · · ,m∗i ) ∈ M i, let sm∗
1,··· ,m∗

i
= TSt

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))
, by

lemma 4.3 we have,

H

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))
≥ (1− sm∗

1,··· ,m∗
i
)
(
log t− log sm∗

1,··· ,m∗
i

)
≥ (1− sm∗

1,··· ,m∗
i
) log t.

Plug in t = 2mk−log
2 q we have∑

(m∗
1,··· ,m∗

i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
H

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))

≥
∑

(m∗
1,··· ,m∗

i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
(1− sm∗

1,··· ,m∗
i
) log t

≥
(
1−O

(√
q3/qlog q

)
− pUInvalid

)
(mk − log2 q).

Let rij be the response of the j-th verifier session on the i-th round.

Claim 5.6. There exists some sessions that the verifier’s response in that session is close to uniform
random. More specifically, there exists j ∈ [k], such that

ℓ∑
i=1

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)∥∥∥∥DVU (
rij

∣∣∣∣m1=m∗
1···

mi=m
∗
i

)
− UM

∥∥∥∥
1

≤ O

ℓ
√
pInvalidm+

log2 q

k


where Um is the uniform distribution over M .

Proof. By claim 5.5,

ℓ∑
i=1

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

) k∑
j=1

H

(
DV

U

(
rij

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))

≥
ℓ∑
i=1

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
H

(
DV

U

(
ri

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))

≥
(
1−O

(√
q3/qlog q

)
− pInvalid

)
(mk − log2 q)ℓ.

The first inequality follows from lemma 4.4. Thus there must exists j ∈ [k] such that

ℓ∑
i=1

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)
H

(
DV

U

(
rij

∣∣∣∣m1=m∗
1···

mi=m
∗
i

))

≥
(
1−O

(√
q3/qlog q

)
− pInvalid

)(
m− log2 q

k

)
ℓ.

11



By lemma 4.5 and concavity,

ℓ∑
i=1

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)∥∥∥∥DVU (
rij

∣∣∣∣m1=m∗
1···

mi=m
∗
i

)
− UM

∥∥∥∥
1

≤
ℓ∑
i=1

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)√
2m− 2

(
1−O

(√
q3/qlog q

)
− pInvalid

)(
m− log2 q

k

)

≤O

ℓ
√
pInvalidm+

log2 q

k

 .

Now let’s prove the theorem by constructing a BQP algorithm D that decides whether x ∈ L or
not. Let Uqw be the uniform distribution over Func2q

M≤ℓ→M and D runs SVUqw
(x), checks whether

the outputting transcript is accepted by the verifier and accepts iff the verifier accepts.

Claim 5.7. If x ∈ L, D accepts with probability ≥ 1− ϵ− negl ≥ 1− 1
mℓ5λ2

− negl.

Proof. Directly follows from the definition of the simulator.

Claim 5.8. If x /∈ L, D accepts with probability ≤ 1− 2
mℓ5λ2

.

Proof. We prove by contradiction. Suppose that SVUqw
(x) outputs an accepting transcript with

probability at least 1− 2
mℓ5λ2

. By claim 5.6 there exists j ∈ [k], such that

ℓ∑
i=1

∑
(m∗

1,··· ,m∗
i )∈M i

dV
U

(
m1=m∗

1···
mi=m

∗
i

)∥∥∥∥DVU (
rij

∣∣∣∣m1=m∗
1···

mi=m
∗
i

)
− UM

∥∥∥∥
1

≤ O

ℓ
√
pInvalidm+

log2 q

k

 ≤ O(
1

λℓ2

)
.

(3)
The second inequality follows from claim 5.3. Now we construct a malicious prover P ∗ that breaks
the soundness of the protocol. The idea of P ∗ is that since it has unbounded power it can send
messages according to distribution D and use session j to convince the external verifier. P ∗ on
round i does the following:

1. Samples m∗i according to the distribution DV
U

(
mi

∣∣∣∣ m1=m∗
1,r1=r

∗
1 ,···

mi−1=m
∗
i−1,ri−1=r

∗
i−1

)
and sends m∗ij to

the external verifier and receive r∗ij .

2. Samples the rest of r∗i according to the distribution DV
U

(
ri

∣∣∣∣m1=m∗
1,r1=r

∗
1 ,···

mi=m
∗
i ,rij=r

∗
ij

)
.

Claim 5.9. If SVUqw
(x) outputs an accepting transcript with probability at least 1 − 2

mℓ5λ2
. Then

P ∗ convinces a honest verifier with probability at least 1− 2
mℓ5λ2

−O
(

1
λℓ2

)
.

Proof. We prove this by hybrid argument. Consider the following hybrids:
Hybrid 0: In this hybrid, the malicious prover does exactly as above. Let p0 denote the probability
that it convinces the verifier.
Hybrid 1: In this hybrid, the malicious prover does the following on round i:

12



1. Samples m∗i according to the distribution DV
U

(
mi

∣∣∣∣ m1=m∗
1,r1=r

∗
1 ,···

mi−1=m
∗
i−1,ri−1=r

∗
i−1

)
and samples r∗ij ac-

cording to the distribution DV
U

(
rij

∣∣∣∣m1=m∗
1···

mi=m
∗
i

)
.

2. Samples the rest of r∗i according to the distribution DV
U

(
ri

∣∣∣∣m1=m∗
1,r1=r

∗
1 ,···

mi=m
∗
i ,rij=r

∗
ij

)
.

Let p1 denote the probability that (m∗1, r
∗
1, · · · ,m∗ℓ , r∗ℓ ) is an accepting transcript. By eq. (3),

|p0 − p1| ≤ O
(

1
λℓ2

)
.

Hybrid 2:In this hybrid, the malicious prover does the following on round i:

1. Samples m∗i according to the distribution DV
U

(
mi

∣∣∣∣ m1=m∗
1,r1=r

∗
1 ,···

mi−1=m
∗
i−1,ri−1=r

∗
i−1

)
and samples r∗ij ac-

cording to the distribution DV
U

(
rij

∣∣∣∣ m1=m∗
1,r1=r

∗
1···

ri−1=r
∗
i−1,mi=m

∗
i

)
.

2. Samples the rest of r∗i according to the distribution DV
U

(
ri

∣∣∣∣m1=m∗
1,r1=r

∗
1 ,···

mi=m
∗
i ,rij=r

∗
ij

)
.

Let p2 denote the probability that (m∗1, r
∗
1, · · · ,m∗ℓ , r∗ℓ ) is an accepting transcript. Since all ri are

independent, p1 = p2.
Hybrid 3:In this hybrid, the malicious prover does the following on round i:

1. Samples m∗i according to the distribution DV
Uqw

(
mi

∣∣∣∣ m1=m∗
1,r1=r

∗
1 ,···

mi−1=m
∗
i−1,ri−1=r

∗
i−1

)
and samples r∗ij

according to the distribution DV
Uqw

(
rij

∣∣∣∣ m1=m∗
1,r1=r

∗
1···

ri−1=r
∗
i−1,mi=m

∗
i

)
.

2. Samples the rest of r∗i according to the distribution DV
Uqw

(
ri

∣∣∣∣m1=m∗
1,r1=r

∗
1 ,···

mi=m
∗
i ,rij=r

∗
ij

)
.

Let p3 denote the probability that (m∗1, r
∗
1, · · · ,m∗ℓ , r∗ℓ ) is an accepting transcript. By lemma 4.7,

p2 = p3. Note that the output distribution in this hybrid is exactly DV
Uqw

thus p3 ≥ 1− 2
mℓ5λ2

by
our assumption and p0 ≥ 1− 2

mℓ5λ2
−O

(
1
λℓ2

)
.

By contradiction we prove the claim.

Combine claim 5.7 and claim 5.8 we prove the theorem.

6 Why it is Hard to Prove Impossibilities on Public-coin Unbounded-
Parallel Zero-knowledge Arguments

To demonstrate the impossibility of constructing a malicious prover from a simulator that emu-
lates the view of a random oracle verifier, consider the following argument. The key insight is
that a quantum algorithm’s method for extracting information from a random oracle may differ
fundamentally from that of a classical algorithm.
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Consider a trivial protocol where the verifier accepts any input, with ℓ rounds, and each message
is in {0, 1}m. Let k denote the number of repetitions. Define Mi as the register storing the i-th
prover’s message and R as the register storing the verifier’s response. The simulator performs the
following steps:

• For each i = 1, . . . , ℓ:

1. Sample two random strings s0, s1 ∈ {0, 1}m, where the first bit of sb is b. Let U
be a unitary operator that maps |s0⟩ to |0m⟩ and |s1⟩ to |0m−11⟩. Prepare the state
|(m1, . . . ,mi−1, s0)⟩ onMi and query the verifier oracle VU to obtain V (m1, . . . ,mi−1, s0).

Then query the inverse verifier oracle V †U to reset the verifier’s state.

2. For each j = 1, . . . , 2km:

(a) Prepare the state

1√
2

(
|(m1, . . . ,mi−1, s0)⟩Mi

+ |(m1, . . . ,mi−1, s1)⟩Mi

)
on the query register Mi.

(b) Query the verifier oracle UV . The state now looks like

1√
2

(
|(m1, . . . ,mi−1, s0)⟩Mi

|V (m1, . . . ,mi−1, s0)⟩R + |(m1, . . . ,mi−1, s1)⟩Mi
|V (m1, . . . ,mi−1, s1)⟩R

)
.

(c) Apply the unitary U to Mi and ignore all qubits except the last qubit of Mi. The
state then becomes

1√
2
(|0⟩ |V (m1, . . . ,mi−1, s0)⟩R + |1⟩ |V (m1, . . . ,mi−1, s1)⟩R) .

(d) Apply Hadamard gates to all qubits, then measure all qubits in the computational
basis. This yields a random string dij ∈ {0, 1}mk and a value yij = ⟨dij , V (m1, . . . ,mi−1, s0)⊕
V (m1, . . . ,mi−1, s1)⟩.

(e) Prepare the state |(m1, . . . ,mi−1, s0)⟩Mi
|V (m1, . . . ,mi−1, s0)⟩ and query the inverse

verifier oracle V †U to reset the oracle state.

Use the collected data dij and yij for j = 1, . . . , 2km along with V (m1, . . . ,mi−1, s0) to
solve for V (m1, . . . ,mi−1, s1) by solving a system of linear equations.

Note that regardless of which query is measured, the probability of correctly identifying the
prover’s message is at most 1

2 . Consequently, for any malicious prover using the simulator in a
‘black-box’ manner (which measures only ℓ queries, a reasonable assumption), the probability of
outputting a distribution identical to the simulator’s output distribution is at most 1

2ℓ
.

7 Other Results: Impossibility on Straight Line Simulator

For a ℓ = ℓ(λ) round protocol (2ℓ messages in total with the prover sends the first message and the
verifier sends the last message) with each message in {0, 1}m. Registers are defined as follows:
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1. M = ⊗ℓi=1Mi where M is the register that the simulator stores its queries on. Mi stores the
i-th message of the prover and has basis {0, 1}m ∪ {⊥}.

2. R is the register that stores the verifier’s answer and has basis {0, 1}m ∪ {⊥}. If the verifier
aborts this register will be on state |⊥⟩.

3. F = F⊗ I⊗B⊗W⊗C is the verifier’s private register.

• F is the register that stores a ‘random oracle’ that decides whether the verifier aborts
for each prover’s query and the randomness used for the honest classical verifier. It is
initialized to

|ψε⟩F =
∑

s∈S,F∈Func
({0,1}m∪{⊥})ℓ→{0,1}

√
Dε(F )

|S|
|s, F ⟩F

where S is the randomness space for the honest verifier and Dε is the weight function
such that the distribution of F respect to Dε is the distribution of functions where for
each x, F (x) is an independent bit with ε probability to be 1 and otherwise 0. For now,
ε is set to 1/ℓ.

• I is the round register that stores which round the verifier is in. It is initialized to |0⟩I.
• B is the qubit register that indicates whether the verifier aborts, its is |1⟩ iff the verifier
aborts. It is initialized to |0⟩B

• W is the work register of the verifier. It is initialized to |0⟩W.

• C = ⊗ℓi=1Ci is the register that the verifier uses it to copy and dequantize the simulator’s
messages and responses. Ci will store the message and response on round i. It is
initialized to |0⟩C.

For any verifier V ∗, it can be represent as an unitary U over register M ⊗R ⊗ F. For simplicity,
we assume that the verifier output accept/reject via setting the first qubit of the R to 1/0 for the
last round.

Definition 7.1 (Straight Line Simulation). A post-quantum zero-knowledge protocol (P, V ) for a
language L is said to have a straight line simulator iff there exists a simulator S that satisfy the
zero-knowledge property and S only queries U (without control registers) but not U †.

Theorem 7.2. If a post-quantum argument Π = (P, V ) for a language L is ϵ-Zero-knowledge for
some ϵ < O

(
1
λℓ2

)
and the simulator is straightline, then L ∈ BQP.

Proof. For any post-quantum zero-knowledge protocol (P, V ) for a language L and a straight line
simulator S for it. W.L.O.G we assume that S queries U for exactly ℓ times. Define a verifier V ∗0
that works as follows:
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Algorithm 1: V ∗0
Input: Register M⊗R⊗ F

1 Run the actual classical verifier V and xor its output on register R condition on B is |0⟩.
Apply bit-flip on B if the classical verifier aborts on this query (due to incorrect format),
this query does not match previous queries (check using C) or F (m1,m2, · · · ,mℓ) = 1
where F is the random function on F and m1,m2, · · · ,mℓ are the queries made by the
prover on M.

2 Apply the copy unitary Ucopy =
∑ℓ

i=1 |i⟩ ⟨i|I ⊗ U
(i)
copy condition on B is |0⟩ where

U
(i)
copy : |m⟩Mi

|r⟩R |u⟩Ci → |m⟩Mi
|r⟩R |u⊕ (m, r)⟩Ci copies the i-the message of the

prover and the response of the verifier to the verifier’s private register.

We prove the following claims that says, the output of the simulator must be ’the message that
it queries the verifier oracle and its response’. If it is not the case, the simulator never knows
whether the verifier aborts.

Claim 7.3. Let psuc be the probability that S outputs a transcript that the verifier does not abort

and accepts Then
∣∣∣psuc − (

1− 1
ℓ

)ℓ∣∣∣ ≤ O (
1
λℓ2

)
. Thus psuc = Ω(1) is non-negligible.

Proof. Follows by the definition of the simulator. Note that V ∗0 aborts with probability
(
1− 1

ℓ

)ℓ
.

Claim 7.4. Condition on the simulator outputting a non-aborting transcript, say (m1, r1,m2, r2, · · · ,mℓ, rℓ),
let |ϕ⟩F be the state of the verifier at the end of the simulation. Let

Πeq = ITrC(F) ⊗
ℓ
i=1 |mi, ri⟩ ⟨mi, ri|Ci

be the projector that projects onto the subspace where the output of the simulator is just its queries
and response. Then we have,

∥Πeq |ϕ⟩F∥
2
2 ≥ 1−O

(
1

λ

)
.

Proof. Let

Πmi = ITrCi (F) ⊗
∑
ri

|mi, ri⟩ ⟨mi, ri|Ci

and
Πri = ITrCi (F) ⊗ |mi, ri⟩ ⟨mi, ri|Ci

be the projectors that projects onto the subspace where the i-th query/query-and-response of the
output of the simulator is just its query/query-and-response of the verifier oracle. Now consider a
verifier V ∗1 that measures F at the start and measures C after each query.
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Algorithm 2: V ∗1
Input: Register M⊗R⊗ F

1 Run the actual classical verifier V and xor its output on register R condition on B is |0⟩.
Apply bit-flip on B if the classical verifier aborts on this query (due to incorrect format),
this query does not match previous queries (check using C) or F (m1,m2, · · · ,mℓ) = 1
where F is the random function on F and m1,m2, · · · ,mℓ are the queries made by the
prover on M.

2 Apply the copy unitary Ucopy =
∑ℓ

i=1 |i⟩ ⟨i|I ⊗ U
(i)
copy condition on B is |0⟩ where

U
(i)
copy : |m⟩Mi

|r⟩R |u⟩Ci → |m⟩Mi
|r⟩R |u⊕ (m, r)⟩Ci copies the i-the message of the

prover and the response of the verifier to the verifier’s private register. Then perform a
measurement on Ci under computational basis. Let the result be (mqueried

i , rqueriedi ).

Note that this verifier cannot be represented as an unitary but since our simulator is straightline
we can still consider the output of SV ∗

1 . Since C and F can be viewed as control register for all other
operators, measurements on Ci and F commute with other unitaries and measurements performed
by the simulator, the verifier oracle, Πmi and Πri for all i ∈ [ℓ]. Thus the output distributions SV ∗

0

and SV ∗
1 are identical. But note that in SV ∗

1 all queries are classical since V ∗1 measures C. Let

mqueried
i , rqueriedi be the measurement outcomes for the measurement on Ci. If there exists i ∈ [n]

such that

∥Πmi |ϕ⟩F∥
2
2 ≤ 1− Ω

(
1

λℓ

)
.

Then in the execution of SV
∗
1 ,

Pr
[
mi ̸= mqueried

i | SV ∗
1 outputting a non-aborting output

]
≥ Ω

(
1

λℓ

)
.

But note that F (m1,m2, · · · ,mi) is information theoretically hidden from the simulator. This
will cause a contradiction since the probability that F (m1,m2, · · · ,mi) = 1 is 1

ℓ independently,
which means that with probability Ω

(
1
λℓ2

)
the simulator claims that the transcript it outputted is

non-aborting but it is actually aborting. Thus for all i ∈ [n], we have

∥Πmi |ϕ⟩F∥
2
2 > 1−O

(
1

λℓ

)
. (4)

If there exists i ∈ [n] and a polynomial p(·) such that

∥Πri |ϕ⟩F∥
2
2 ≤ 1− Ω

(
1

λℓ

)
.

By eq. (4), we have

Pr
[
mi = mqueried

i ∧ ri ̸= rqueriedi | SV ∗
1 outputting a non-aborting output

]
≥ Ω

(
1

λℓ

)
which will cause a contradiction since in SV

∗
1 the randomness for the honest verifier is measured

and the response should be unique and the probability of outputting a wrong response should be
at most O

(
1
λℓ2

)
by definition. Thus for all i ∈ [n], we have

∥Πri |ϕ⟩F∥
2
2 > 1−O

(
1

λℓ

)
.
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By quantum union bound, we prove this claim.

Now we consider a non-black-box simulator S that runs S honestly but outputs the measurement
result of C as the transcript (and the measurement result of B as the bit indicating whether the
verifier aborts). By the above claim, this is a valid simulator. We will use this simulator to construct
a quantum polynomial time algorithm D that decide whether an instance x is in L or not. D upon
receiving its input instance x, initializes the verifier’s private register as above and runs the simulator
S on input x with respect to V ∗1 . This is because we only need to sample the value of F (·) when each

classical query arrives. Finally, D accepts iff the transcript (mqueried
1 , rqueried1 , · · · ,mqueried

ℓ , rqueriedℓ )
is both non-aborting (according to F ) and accepted by the verifier.

Claim 7.5. If x ∈ L, D accepts with at least psuc −O
(
1
λ

)
≥ Ω(1) probability.

Proof. By claim 7.3, with probability psuc, (m1, r1, · · · ,mℓ, rℓ) is both non-aborting and accepted.

By claim 7.4, with probability 1−O
(
1
λ

)
, (m1, r1, · · · ,mℓ, rℓ) = (mqueried

1 , rqueried1 , · · · ,mqueried
ℓ , rqueriedℓ ).

By union bound we prove the claim.

Claim 7.6. If x /∈ L, D accepts with at most O
(
1
λ

)
+ negl probability.

Proof. We construct an adversary B that tries to break the soundness of the protocol with proba-
bility. B runs S with respect V ∗2 that forwards queries to an outside honest verifier V .

Algorithm 3: V ∗2
Input: Register M⊗R⊗ F

1 Measures I to obtain the round number i. Measures Mi and forward the measurement

result mqueried
i to the external verifier V . Xor its response rqueriedi on R. Apply bit-flip on

B if this query does not match previous queries (check using C) or
F (m1,m2, · · · ,mℓ) = 1 where F is the random function on F and m1,m2, · · · ,mℓ are the
queries made by the prover on M.

2 Apply the copy unitary Ucopy =
∑ℓ

i=1 |i⟩ ⟨i|I ⊗ U
(i)
copy condition on B is |0⟩ where

U
(i)
copy : |m⟩Mi

|r⟩R |u⟩Ci → |m⟩Mi
|r⟩R |u⊕ (m, r)⟩Ci copies the i-the message of the

prover and the response of the verifier to the verifier’s private register. Then perform a
measurement on Ci under computational basis. Let the result be (mqueried

i , rqueriedi ).

It is easy to see that S cannot tell the difference between S
V ∗
0 , S

V ∗
1 and S

V ∗
2 are identical. On

the other hand, by claim 7.4, with probability 1 − O
(
1
λ

)
, the output of S

V ∗
2 is just its transcript

with the external verifier V . By the soundness condition B should only succeed with negligible
probability. By union bound, we prove the claim.

By claim 7.5 and claim 7.6, the efficient quantum algorithm D decides L, thus L ∈ BQP and
we are done with the proof.

8 Other Results: Impossibility on FLS-type Public-coin Unbounded-
Parallel Zero-knowledge Arguments

Definition 8.1 (FLS-type protocol [FLS99]). A FLS-type protocol for NP language L is a protocol
of the following form:
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• Public input: x ∈ {0, 1}n (the prover wish to prove x ∈ L)

• Prover’s auxiliary input: w (a witness for x ∈ L)

• Step 1: Generation Protocol: The prover and the verifier first engage in a generation
protocol Gen, let the transcript of this step be τ .

• Step 2: WI argument: The prover and the verifier then engage in a witness indistinguish-
able zero-knowledge argument that proves either τ ∈ ∆ or x ∈ L where ∆ is a fixed language
related to the generation protocol Gen.

Definition 8.2 (Generation protocol). A protocol Gen between a prover P and a verifier V is called
a generation protocol iff there exists a NP language ∆ such that the protocol satisfies the following
properties:

• Soundness: Let τ be the transcript of execution. If the verifier executes the protocol honestly
then for any prover Pr [τ ∈ ∆] < negl.

• Simulation of verifiers: There exists a simulator SGen that has black-box access to the
verifier such that for any non-uniform QPT verifier V ∗(|ψ⟩), SGen runs for time polynomial
in the running time of V ∗(|ψ⟩) and 1/ϵ where ϵ is the gap parameter, outputs a pair (v, σ)
such that:

1. Let pd be the maximal distinguishing probability between v and the view of V ∗(|ψ⟩) in
the execution of Gen between an honest prover and V ∗(|ψ⟩). That is, for all QPT dis-
tinguisher D, ∣∣∣∣∣ Pr

v←SV
∗(|ψ⟩)

Gen (x)

[D(v) = 1]− Pr
v←ViewV (P,V ∗(|ψ⟩))

[D(v) = 1]

∣∣∣∣∣ ≤ pd.
2. Let τ be the transcript obtained by view v. Then the probability that both τ ∈ L and σ is

a witness for it is at least 1− ϵ+ pd.

Theorem 8.3. Let (P, V ) be a post-quantum black-box weak zero-knowledge argument for any NP
language L, if it satisfies:

• It is a public-coin protocol.

• It remains black-box weak zero-knowledge under unbounded parallel repetition.

• It is an FLS-type protocol and the simulator is straightline in the WI argument step.

Then L is in BQP.

Proof. Consider the malicious verifier V O0 mentioned in proof for theorem 5.2. Let all parameters
and notations be the same as what it is in the proof for theorem 5.2.

Claim 8.4. Let τj be the transcript of the generation step in session j. There exists a session
j ∈ [k] such that

Pr [τj ∈ ∆] ≤ O
(

1

λℓ2

)
.
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Proof. The claim follows from claim 5.6 and the soundness property of generation protocol. Con-
sider a malicious prover P ∗ for the generation protocol that sends messages according to distribution
D. More specifically, P ∗ on round i samplesmi according to the distributionD (mi | (m1, r1, · · · ,mi−1, ri−1)
and sendsmij to the verifier to receive rij , then samples ri according to the distributionD (ri | (m1, r1, · · · ,mi, rij)).
By the soundness property the transcript τ ′ between this prover and V O0 should satisfy

Pr
[
τ ′ ∈ ∆

]
< negl.

Together with the fact that the distance between the distribution of τ and the distribution of τ ′ is
O
(

1
λℓ2

)
we prove the claim.

Now we construct a black-box simulator SWI that simulates the WI argument for any verifier
V ∗(|ψ⟩) in a straightline way. SWI calls S with verifier V ′ = V O0 ◦ V ∗(|ψ⟩) which answers queries
using V O0 but substitute responses in the WI argument of session j by the response of V ∗(|ψ⟩).
Note that Pr [τj ∈ ∆] ≤ O

(
1
λℓ2

)
. If τj /∈ ∆ and the verifier accepts in the WI argument then it

must be the case that x ∈ L. By theorem 7.2, this means that L ∈ BQP.

Corollary 8.5. Construction 4.1 in [ACP20] is not an unbounded parallel zero-knowledge for all
NP language with respect to black-box simulators.
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